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Abstract

Let g be a Lie algebra over an algebraically closed field of charactepisti® and letU (g) be the
universal enveloping algebra gf We prove in this paper fag = gl,, andg = s, that the centre of
U(g) is a unique factorisation domain and its field of fractions is rational g=es(,, our argument
requires the assumption thatt n while for g = gl,, it works for any p. It turned out that our two
main results are closely related to each other. The first one confirms in type A a recent conjecture of
A. Braun and C. Hajarnavis while the second answers a question of J. Alev.
0 2005 Elsevier Inc. All rights reserved.

1. Introduction

Let K be an algebraically closed field of characterigtie 0. In this noteG denotes a
connected reductivi -group with Lie algebrg. Mostly we will be in the situation where
G =GL,(K) or G =SL,(K) and p { n. Let x — x[? denote the canonicalth power
map ong equivariant under the adjoint action 6f

Let U = U(g) denote the universal enveloping algebragofThe groupG acts onU
as algebra automorphisms. This action extends the adjoint actiGhaf g, hence pre-
serves the standard filtratigl/;); >0 of U. The associated graded algebrélgr= S(g) is
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a domain, sd/ has no zero divisors. The centreof U is therefore a filtered -algebra,
a domain, and a filtere@-module.

Let @ = O(g) be the field of fractions of. By a classical result of Zassenhausis
Noetherian and integrally closed @; see [23]. Moreover, tdeg, Q = dimg and the
localisationD(g) := Q ®, U(g) is a central division algebra ove® of dimensionN?
whereN is the maximal dimension of irreducibfemodules. WherG = GL,(K) or G =
SL,(K) we haveN = p""—D/2: see [14], for example. The maximal spectriof the
algebraZ is called theZassenhaus varietyf g. By the above discussion, the variefyis
affine, irreducible and normal. Furthermore, dim= dimg. It is proved in [4] that under
rather mild assumptions gnthe singular points of are exactly the maximal ideats for
which (Z/mZ) ® 7 U is not isomorphic to the matrix algebra Maik).

At present very little is known about the division algeliPag) and its class in the
Brauer group of. In order to get started here it will be important to address the following
guestion posed to the first author by Jacques Alev.

Question (J. Alev). Is it true that Q is K-isomorphic to the field of rational functions
K(X1,..., X)) withm = dimg? In other words, is it true that the Zassenhaus varigty
is rational?

This is known as theommutative Gelfand—Kirillov conjectureee below. Until now the
answer to this question was known only in the simplest gasesl>. Another interesting
question related t& was recently raised in [3] and answered positivelyges sl (mild
characteristic restrictions may apply).

Conjecture (A. Braun and C. Hajarnavis)he centre o/ (g) is a unique factorisation
domain.

Similar problems can be raised in the characteristic zero case as well. Here one has to
replaceU (g) by the quantised enveloping algeléra(gc) without divided powers at a root
of unity € € C; see [3] for more detail.

The main result of this paper is the following theorem which solves both problems in
the modular case far = gl,, and forg = sl,, with p {n.

Theorem. If g = gl,, or g = sl,, and p { n, then the centre df (g) is a unique factorisation
domain and its field of fractions is rational.

One expects this result to extend to the Lie algelrs®morphic tosl,, pgl,, andpsl,
with p | n. However, to obtain such an extension by our methods one would need an explicit
description of the invariant algebis(g)?, which is currently unavailable. As for the Lie
algebras of other types, both problems remain open and new ideas are required here.
Our proof of the unique factorisation property of the centr& ¢§l,,) relies on the irre-
ducibility of a certain polynomial functiod € K[gl,] semiinvariant relative to a maximal
parabolic subgroug® of GL,(K). In Section 5, we use the irreducibility dfto describe
all semiinvariants o in K[gl,]. In Section 6, we establish an infinitesimal version of this
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result making use of a Jacobian criterion obtained by Skryabin in [20]. It is worth remark-
ing that all results of Section 5 are valid in the characteristic zero case as well (the proofs
are essentially the same).

For the moment we drop the assumptionsirand g. The Gelfand—Kirillov conjec-
ture for g states that the fraction field @f (g) is isomorphic to a Weyl skew fiel®,, (L)
over a purely transcendental extensioiof K. The centre of the fraction field df (g) is
the fraction fieldQ of Z. In characteristic O this is proved in [6], for instance. In positive
characteristic this follows from the fact that the fraction fieldlofg) is nothing but the
division algebraD(g) introduced above. The centre O, (L) equalsL in characteristic
0 and in characteristip it is generated ovef by the pth powers of the standard gener-
ators of D, (L) over L. So in both cases it is rational (a purely transcendental extension
of K). Therefore the original GK-conjecture implies the ‘commutative’ GK-conjecture
which states tha@ is rational.

Jacques Alev has informed us that some results of this note can be used to prove the
GK-conjecture forg = gl,, in characteristig. It is worth mentioning here that the original
GK-conjecture for finite-dimensional simple Lie algebras déeemains open in all cases
except in type A where it was proved by Gelfand and Kirillov themselves; see [11]. It
seems that proving the rationality ¥for all reductive Lie algebras might shed more light
into this area of Lie Theory.

2. Preliminaries

2.1. Given an element of a commutative ringS we denote by(x) the ideal ofS
generated by. Recall thatx is calledprimeif (x) is a prime ideal ofS.

Let A be an associative ring with an ascending filtratidn); <. If I is a two-sided ideal
of A, then the abelian groupand the ringA /I inherit an ascending filtration from and
we have an embedding@® < gr(A) of graded abelian groups. If we identify(gy with
a graded subgroup of the graded additive groupigby means of this embedding, then
gr(l) is a two-sided ideal of gi) and there is an isomorphism(dr/7) = gr(A)/ gr(1);
see [1, Chapter 3, Section 2.4].

Now assume thdt); A; = A and(); A; = {0}. For anonzera € A we define deg) :=
min{i € Z | x € A;} and gkx) := x + Ax_1 € gr(A)F = Ay/Ar_1 wherek = degx). If
gr(A) has no zero divisors, then the same holds Aoand we have for, y € A \ {0}
that de@xy) = degx) + dedq(y), gr(xy) = gr(x) gr(y), and gK(x)) = (gr(x)). We mention
for completeness that d = @, ., A" is a graded ring, thetA,),cz = (Zkgn A% ,ez
defines an ascending filtration d@f with the two properties mentioned above aad=
gr(A) as algebras.

2.2. Thep-centreZ, of U is defined as the subalgebraléfgenerated by all elements
xP —xIPlwith x € g. Itis well known (and easily seen) tha}, C Z is a polynomial algebra
in x{’ — xi[p] where{x;} is any basis ofy. For a vector spac¥ over K the Frobenius twist
v of v is defined as the vector space ovémwith the same additive group a5 and
with scalar multiplication given by. - x = AY/7x. Note that the linear functionals and the
polynomial functions or ' are thepth powers of those oF. The Frobenius twist of a
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K -algebra is defined similarly (only the scalar multiplication is modified). Following [18]
we definen: S(g)Y — Z, by settingn(x) = x? — x[?! for all x € g; see also [19]. This is
a G-equivariant algebra isomorphism, hence it restricts to an algebra isomorphism

n:(S@°)® = (s@®) = z8.

We have g¢r(x)) = x? for all x € g\ {0}. Furthermore the associated graded algebra of
the filtered algebr&, C U is G-equivariantly isomorphic to the graded subalge®ig)”
of S(g).

2.3. In the remainder of this note we assume tGat GL,(K) or G = SL,,(K) and
p1n.Inthis case Theorem 1.4 in [10] shows that the filteGechodulesU (g) andS(g) are
isomorphic (the isomorphism in [10] is obtained by composing the Mil'ner ghalfi —
S(U) with a G-equivariant projection fron/ ontog). Consequently, eaai-moduleU,,_1
has aG-invariant direct complement iti,,. This implies that the associated graded algebras
of U% andZ are isomorphic t&5(g)¢ andS(g)?, respectively.

The trace formg : gl,, x gl,, — K associated with the vector representation of, GL)
is nondegenerate and the same holds for its restrictieh @sp { n. Let0 : S(g*) — S(g)
denote thaG-equivariant algebra isomorphism induced yit takes f € g* to a unique
x € g such thatf (y) = B(x, y) forall y € g).

Let h be the subalgebra of all diagonal matricegipandh’ =h Nsl,. Letn™ (respec-
tively n™) be the subalgebra of all strictly upper (respectively lower) triangular matrices
in g. To unify notation we set =§ if g =gl, andt =8 if g =sl,. Then we have
g=n" @ tdnt. Also, t = LieT whereT is the group of all diagonal matrices .
Furthermoret is the orthogonal complement o @ n* with respect tcg.

2.4. The Weyl group action induced by the adjoint action of the normal&e(T’) on
t is nothing but the restriction toof the permutation action of the symmetric groGp
on the space of diagonal matricgsin [16, Theorem 4], Kac and Weisfeiler proved that
a modular version of the Chevalley restriction theorem holds for the coadjoint action of
any simple, simply connected algebrd&egroup. Their arguments are known to work for
all connected reductiv& -groups with simply connected derived subgroups. In particular,
they apply to our groupgs. Sinced: K[g] — K[g*] is a G-equivariant algebra isomor-
phism, Theorem 4 in [16] implies that the restriction mi&fy] — K [t] induces an algebra
isomorphismk [g]¢ => K[t]". ,

For 1< i < n defines; € K[gl,]°% by settings; (x) = tr(/\' x) for all x € gl,,, where
A x is theith exterior power ofc. Then

XX =X"4Y (=15 () X"
i=1

is the characteristic polynomial af Let {e; ; | 1<, j < n} be the basis ofl, consisting
of the matrix units and lgf5;; | 1 <, j < n} be the corresponding dual basigjiij. To ease
notation identify eaclg;; with its restriction to the diagonal subalgelgrd=or 1< i < n the
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restriction ofs; to b is then theith elementary symmetric functian in &1, €22, ..., &un-

By the theorem on symmetric functions,, .. ., o, are algebraically independent and gen-
erate the invariant algebi[h]®". Our discussion in Section 2.3 now shows thatsfe
are algebraically independent and generate the invariant algglta) - .

Supposep  n. Given a polynomial functiory on gl,, we denote byf’ its restriction to
sl,. The span of alk;; — &;; is an&,-invariant direct complement to the lin€oy in b*,
hence theX -subalgebra generated by &l] — &;; is an&,-invariant direct complement
to the ideal ofK[h] generated by;. From this it is immediate that the restriction map
K[h] — K[b'] induces an epimorphisrﬁ[h]gn — K[H'1®" whose kernel is the ideal of
K[h1®" generated by. Since the subalgebra &[] generated by», ..., o, is a
direct complement irk [h]" to this ideal, we deduce that the restrictiofky, . .., s, |y
are algebraically independent and generafe’1S. But thens,, ..., s, are algebraically
independent and generate the invariant algétf,, ]S> by our discussion in Section 2.3.

Under theG-equivariant isomorphisré: S(g*) — S(g) and the induced ,-equivari-
ant isomorphismsS(t*) = S(t), the restriction mags(g*) — S(t*) corresponds to the
projection homomaorphisn® : S(g) — S(t) defined as follows: if we identify§(g) with
ST ® S ®Snt), then® (x @ h ® y) = x°hy® where £0 denotes the zero degree part
of f € S(g). By the aboveg@ induces an algebra isomorphisstg)® = §(t)©».

2.5. In[16], Kac and Weisfeiler also proved a noncommutative version of the Cheval-
ley restriction theorem. Again the arguments in [16] are known to generalise to all con-
nected reductive -groups with simply connected derived subgroups; see [14, Section 9].
In particular, they apply to our groug.

Letv:U=Um)QUH®) ®U ") = U(t) = S(t) be the linear map taking® h ® y
to x%2y%, whereu® denotes the scalar part ofe U with respect to the decomposition
U = K1® U, whereU, is the augmentation ideal &f. The restriction o to UN¢(™)
is an algebra homomorphism.

For G = GL,, definep € h* as Z?;l(n — 0)&;;, whereé;; is the functionald — A;;
and for G = SL,, let p denote the corresponding restriction. In the latter case the
differential of the character df that equals the half sum of the positive roots. Theis
as in [14, Section 9.2]. Define the shift homomorphigms (t) — S(t) by settingy (h) =
h—p(h)forall i € t. In[16, Section 8] there was defined an action of the Weyl gidugn
S(t) = K[t*] which is called the dot action in [14]. The dot actionWfon S(t) is related
to the natural action as followsy. = y 1 o w o y. It follows from [14, Theorem 9.3] that
y o induces an algebra isomorphism betwé&ghandS(t)©». See also [16, Theorem 1].

As a consequencé]C is a polynomial algebra in difrvariables.

Using the descriptions ab and¥ and a PBW-basis it follows that fare U \ {0} with

@ (gr(x)) # 0 we have? (x) #0 and

or(y (¥ (1)) = gr(¥ (x)) = @(gr(x)).

By the injectivity of the restriction of® to S(g)”, the displayed equalities hold for
all x e UY. Thus we can deduce the injectivity gfo ¥ :U% — S(t)©» from that of

@ :S(g)¢ — S)Sn. The same applies to the surjectivity; see the proof of Proposition 2.1
in[22].
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3. Invariantsfor the Liealgebra

3.1. The aim of this section is to put together all results on Lie algebra invariants that
will be needed later on. The results in Sections 3.1, 3.2 and 3.5 are known for reductive
groups satisfying certain standard hypotheses, but their proofs are spread over the literature
(and folklore); see [5,8,10,15, Section 7,16,22], and the references therein.

Given x € g we denote by, (x) the centraliser ok in g. An elementx € g is called
regular if dim 34(x) = dimt. It is well known and not hard to see that djg(x) > dimt
for all x € g.* Moreover, the Sefireg Of all regular elements ig is nonempty and Zariski
open ing. Furthermore, Linear Algebra shows thais regular ingl,, if and only if the
minimal polynomial ofx equalsy, (X), which happens if and only if the column spacé
is a cyclicK [x]-module.

The first result we need is a modular version of Kostant’s differential criterion of regu-
larity [17]. It is essentially due to Veldkamp [22].

Lemma 1. For x € gl, the following are equivalent

(1) the element is regular,
(2) the differentialsd, s, ..., dys, are linearly independent.

Proof. That the independence of.d, ..., d,s, implies the regularity ofx is proved
in [22, Section 7]. The proof requires a lemma on the invariant alg&i@® [22,
Lemma 7.2], the fact that the semisimple irregular elements fofm a dense subset in
9\ greg [22, Proposition 4.9], and a result from [2, Proposition 6, Chapter 5, Section 5.5].
All these are valid fog = gl,,.

That the regularity ofc implies the independence ofd, ..., d,s, is much easier to
prove. Givera= (as, ..., a,;) € K" we set

ai az ap—-1 4an
1 0 0 0
xa = O 1 0 0
00 - 1 0

Eachx, is regular ingl,, as the minimal polynomial of; equalsX” — "%_; a;X"~'. The
setS = {x5 | a€ K"} is ann-dimensional affine subspacedgs), through the poinkg. The
restriction toS of the morphisnx — (s1(x), ..., s, (x)) is an isomorphism of onto A”.
From this it is immediate that the differentialgsd, .. ., d,s, are linearly independent for
all x € S. On the other hand, every matrixwhose minimal polynomial equals, (X) is
similar to a matrix fromS. Hence these differentials are independent for all regulart

1 As in the group case, take a Borel subgraBpf G with x € Lie(B) and consider the morphisi —
Lie(B, B) sendingg € B to (Adg)(x) — x € Lie(B, B); see [21, p. 1]
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3.2. Now we look at the regular elementsdh,. Recall the notational conventions of
Section 2.4. It is immediate from the definition that gl, is regular if and only so is
x + Al, foranyx € K.

Corollary. Suppose { n. For x € s, the following are equivalent

(1) the element is regular insl,;
(2) the element is regular ingl,,;
(3) the differentiald,ss, ..., dys, are linearly independent.

Proof. We havejgq, (x) = 3s1,(x) @ K1,. This shows that (1) and (2) are equivalent.
The differentials ds1, ..., d,s, are independent if and only so are the restrictions of
dyso, ..., dys, tosl,, the kernel of ds; = s1. The equivalence of (2) and (3) now follows
fromLemmal. O

3.3. As mentioned in the introduction, our proof of the main theorem will rely on the
following proposition communicated to us by S. Skryabin. We were unable to trace this
result in the literature. Although it resembles strongly one of the basic facts of the invariant
theory of groups, it also captures some essential features of the invariant theory of restricted
Lie algebras.

Recall that the coordinate algebkdq V] of a finite-dimensional vector spadeover K
is a unique factorisation domain. The algelsfgyV ] = @z;o Si(V*) is graded angl(V)
acts onk [V] as homogeneous derivations of degree 0. Therefof#,]? < K[V 18{(").

Proposition 1. Let L be a Lie algebra with. =[L, L] and letV be a finite-dimensional
L-module. Then the invariant algebm& [V X is a unique factorisation domain and the
irreducible elements ok [V]% are thepth powers of the irreducible elementsifV] not
invariant underL and the irreducible elements &f[V] contained inK [V ]~.

Proof. Let f be a nonzero element Ki[ VX and suppos¢ = f1 f> wherefy, f> € K[V]
are coprime of positive degree. Lebe any element ith.. Since(x - f1) fo = —fi(x - f2),
the uniqueness of prime factorisation K[V] implies that f> divides x - f». As
degx - f2) < degfz it must be thatx - fo = x(x)f2 for some x(x) € K. The map
x.L — K is a character of.. As L =[L, L], it must be thaty = 0. This shows that
f1, f2 € K[V]L. Now supposef = g" for somen € N. Write n = sp + r with s, r € Z,.
and 0<r < p. Then O=x - f =ng" 1(x - g). Forr # 0 this yieldsg € K[V %, while for
r =0 we havef = (g”)* with g? € K[V]~.

This shows that any irreducible elementAf{ V1% is either an irreducible element of
K[V] invariant undet or a pth power of an irreducible element K[V ]\ K[V 1. Now
the unique factorisation property &f[V ]~ follows from that ofK[V]. O

3.4. Let X be an affine algebraic variety defined o¥érand letL be a finite-dimen-
sional restricted Lie algebra together with a restricted homomorpliism Derx K[X].
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Define L, to be the stabiliser of the maximal ideal of K[X] corresponding to a point
x € X. Following [20, Section 5], we put

cr(X) :=maxcodimg L,.
xeX

In the situation of Section 3.3, whePé= V is a finite-dimensional restricte@-module,
itis easy to seethal, ={/ € L |I(x) =0} foreveryx € V.

Lemma 2. We havek [gl,]%" = K[gl,]*" for all n € N. Moreover,K [gl, 19" is a unique
factorisation domain and the irreducible elementskdf(, 1% are the pth powers of the
irreducible elements oK[gl,] not invariant undergl,, and the irreducible elements of
K[gl,] contained inK [gl,,18".

Proof. 1. For p { n the first part of the statement is obviousgs= sl, & K I,,. To tackle

it in the general case we recall our notation in Section 2.3 andl segl,, . It follows from
our remarks above thal, ), = 341, (x) for all x € V. So the discussion in Section 3.1
yields thatcy, (V) = n? —n. Leth be a regular element @ff, contained inh. Then we
have(gl,)n = 341, (h) = b andgl, = sl, + (gl,);. But thenK[g[, 1" = K[g[,]°" in view

of [20, Corollary 5.3].

2. The second part of the statement follows immediately from Propositiofyl if)
(2, 2), since then, as is well knowal, is perfect. To establish it in general we will slightly
modify our arguments in the proof of Proposition 1. If fore K[V 9% we havef = f1 f>
with f1, f> € K[V] coprime, then as in that proaf- f> = x(x) f2 for all x € gl,,. The
charactel : gl, — K mustvanish ofigl,, gl,,] = sl,,. Butthenfy, f» € K[V]9", by part 1
of this proof. The rest of the proof of Proposition 1 applies in our present situation, and the
result follows. O

3.5. The statement below is known but we wanted to streamline its proof by employing
the relationship between filtered and graded algebras in a more systematic way. Assertion
(iv) is often referred to as Veldkamp’s theorem; see [22, Theorem 3.1].

Proposition 2. Letm be the rank ofj, i.e.m = dim¢t, and put(z1, ..., t,,) = (s1, ..., s,) for
g=gl, and(t1,....ty) = (55, ..., s,) for g =sl,. Defineu; e U%byu;=((yow)to
®)(O(1;)) = (y o W)~ 1(0(#;]¢)). Then the following hold

(i) The sefg\ greg is Zariski closed of pure codimensiarin g.

(i) K[g]? is a freeK [g]”-module with basi$t’l‘1 etk o<k < p).
(i) S(g)9 is a freeS(g)?-module with basi§d (1)1 - - - 0(t,,)*» | 0 < k; < p}.
(iv) Zis afreeZ,-module with basigu}® - -up' | 0< ki < p).

Proof. (i) The first assertion is proved in [22, Theorem 4.12]. The arguments there also
apply tog = gl,,.

(i) By Lemma 1, its Corollary and (i), the Zariski closed subsetgatonsisting of
all x for which the differentials ¢, ..., d.z, are linearly dependent has codimension 3
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in g. The second assertion now follows from [20, Theorem 5.4] applied to the variety
X = g. Arguing as in the proof of Lemma 2 one observes thaX) = n2 — n in our case.
Therefore, dinX — cg(X) =m.

(iiif) The third assertion follows immediately from part (i) in view of the isomorphism
6:K[g] = S(g).

(iv) Recall from Sections 2.2 and 2.3 that the associated graded alget#a#/éf and
Z, areS(g)8, S(g)° andS(g)?, respectively. By our remarks in Sections 2.3 and 2.5 we
haved (¢;) = gr(u;). The fourth assertion now follows from part (iii) by a standard induction
argument; see the proof of Theorem 3.1 in [22] for more detaits.

Remark 1. It follows from Proposition 2 that the bases in (i), (iii), (iv) are also bases

of K[g]°, S(g)¢ andUC over (K[g]")°, (S(g)?)¢ and Zg, respectively. This implies

that K[g]® = K[gl” ®k(g)r)¢ K[g]°, S(9)% = S(g)” ®(s(g)P)C S(@¢andz =2z, ®zg

UC as algebras. The first two of these isomorphisms are known as Friedlander—Parshall
factorisations; see [10, Theorem 4.1].

Remark 2. It also follows from Proposition 2 tha®(g) is a finite extension of the field of
fractions ofZ,, = S(g)™¥ and hence tdeg, Q(g) = dimg.? The analogous statements for
the fields of fractions oK [g]? andS(g)?¢ are obvious.

4, Proof of the main theorems

4.1. Defineo;; € Derx K[gl,] be setting;; (¢5) = 1if (r, s) = (i, j) and 0, otherwise.
It is immediate from our discussion in Section 2.4 thais the sum of all diagonal minors
of orderk of the matrixzi’j &;je; ; with entries inK[g(,]. If we write eachs; as a poly-
nomial in theg;;, then we obtaim equations in thé;; and thes,. By the aboveg;; with
one fixed row or column index are not multiplied among each other in these equations. In
particular these equations digear in £11, €12, ..., £15-

Let R denote the",-subalgebra oK [gl, ] generated by alj;; with i > 1. Set

011(s1) 912(s1) ... 01.(s1) &1 51
_ 011(s2) 012(s2) ... 01.(s2) _ &12 a 52
1) 120sn) .. Bunsn) 1 n

By the preceding paragraph the matdikhas entries irR and the following vector equa-
tion holds:

M-c=s+r, whereM egl,(R) andr € R". (1)

2 This also follows from a version of the PWB theorem; see [12, Chapter 5, Section 7, Lemma 4].
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Clearly, M is a matrix with functional entries. Hend# (x) € gl,, is well defined for any
x € gl,. Letd = detM, a regular function ory. Recall from Section 3.1 the definition of
the affine subspacg = {x5 | a€ K"} of gl,,.

Lemma 3. For all ac K" we haved(xa) = (—1)1"/2), In particular, d # 0.

Proof. Let &1, ...,&, be the coordinate functions aki” and letd; be the derivation of

the coordinate ring oK™ such thato; (¢;) = 1 wheni = j and O otherwise. Then it is
easy to see thdl ;(f)(xa) = 3;(b— f(xp))(a) for all f e K[gl,]. Furthermore, it fol-
lows from the formula displayed in Section 2.4 and our remarks in the proof of Lemma 1
thats; (xa) = (—1)'~a;. So the(, j)-th entry of M (xa) equals(—1)'~13;(&;). But then
M(xg) =diagl, —1, ..., (=1)" 1) and(detM)(xa) = (D)2, 0

4.2. Let Q denote the field of fractions & [g]¢. It follows from Proposition 2 thap
is generated by: + dimg elements. Using Lemma 3 we will show thatgenerators can
be made redundant here. Sincelég, O = dimg, this will imply that Q is rational. We
will then use a very similar method to establish the rationalit@of

Let F: f — f? denote the Frobenius endomorphisnkdiy(,,]. It acts componentwise
ongl, (K[gl,]) andK[gl,]". Note thatR’ c R.

Theorem 1. Both S(g)? and Z have rational fields of fractions.
Proof. 1. First we assume thgt= gl,,. Applying F to both sides of (1) we get
MF.cF =" +rf, whereM e gl,(R") andr € (RP)". (2)

By Lemma 3, detM ©) = d? # 0. Thereforec! has components in tHg,-subalgebra of
O generated by!, ..., s7, (@”)~t andé! withi > 1. As aresultQ is generated by the?
elementsy, ..., s, andé}i”. with i > 1. Tf]ese elements must be algebraically independent
because tdegy O = n?; see Remark 2. Thug is rational overk . The same assertion then
holds for the field of fractions a$(g)? in view of the G-equivariant algebra isomorphism
6:K[gl = S(g).

2. Recall from Sections 2.2 and 2.4 that6 : K[g]"Y — Z, is aG-equivariant algebra
isomorphism. Observe thaté;;) = e;; and thatR := n(6(R)) is theF,-subalgebra of

Z, generated by aléf’j - el[[}] with j > 1. Letee Z); denote the column vector whogt

component equale;.’fl — el[f’l]. Applying n o 6 to both sides of (1) yields

M-e=n(6(9) +F, whereM € gl,(R) andi € R". (3)

By Proposition 2,9 is generated ovek by the elementsi’f/ — e,[f’j] andn algebraically
independent elements generatidy. Besides, tdeg, @ = n?; see Remark 2. Since
n0(@s;)) € ZI? and detM = n(6(d)) # 0, we now argue as in part 1 of this proof to deduce
thatQ is rational overk .
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3. Now assume that = sl,, and p { n. Recall our notation from Section 2.4. Applying
the restriction homomorphisik [gl,,] — K[sl,], f +— f’, to both sides of (1) we obtain
the following equations in the{j ands,, ..., s,:

n-

n

M' - =5 +r', whereM’ €gl,(R") andr’ € (R)".

Here M’, ¢, s, r’ have the obvious meaning ar®f is the IF,-subalgebra ofK[sl,,]
generated by aIEl.’j with i > 1. Note that we now havé(gi’j) =ej; fori # j and

0(&) =ei; — (1/n)1,. SinceS N sl, # @, Lemma 3 shows that’ = detM’) # 0. We

can thus repeat our arguments from parts 1 and 2 of this proof to deduce that the generators
(E1)P, ..., (6P and (er1 — (1/n) )P — (er1 — (1/n)1n),e£l, ces e,’,’,l of 0 and Q,
respectively, are redundant. This proves that b@thnd Q are K -rational in the present

case (recall that we now have one generator less atetrQ = tr.degy Q =n? — 1; see
Proposition 2 and Remark 2).00

4.3. We now turn our attention to the second problem: the unique factorisation prop-
erty. The determinant will play a prominent réle here.

Proposition 3. The polynomial functiod is irreducible inK [gl,,].

Proof. 1. Letg = gl, and letP be the maximal parabolic subgroup@f= GL, (K) con-
sisting of all invertible matricega;;) with 1,1 =0 for all i > 1. As a first step, we are
going to show that/ is a semiinvariant foiP. We have

d= " SNm)d171)(51) Dwn) (5n)- (4)

€S,

The adjoint action of; on g induces a natural action @f on the Lie algebra Der K |[g].
The subspac® of Derg K[g] consisting of all homogeneous derivations of degree
is G-stable and ha$d;; | 1 < i, j < n} as a basis. We defir® to be the subspace ai
spanned by alby; with 1 <i < n.

Let g; denote the subspace gf spanned by alf; ; with i > 1. It is easy to see that
gp consists of all linear functiong on g* with v(e1;) = 0 for all i. As the linear span
of all e; is (Ad P)-invariant, g is invariant under the coadjoint action &f on g*. As
Do={D €D | g C KerD}, it follows thatg o D o g~ € D¢ for all D € Dg andg € P.
Thus P acts o®g. We denote by the corresponding representationfof

Let g be any element irP and denote byl = (a;;) the matrix ofz(g) relative to the
basis{0; | 1 <i < n} of Dg. Since each; is G-invariant, we have

2(81;(s)) = (g0 315 087 ) (s1) = (r()(@1))(s:) (L <i, j <n).

Combining this with (4) we now obtain

g(d)= Z sgn(m) (t()(91,7(1)) (1) - - (T(8) L7 (n))) (52

e,
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=y Sgr(”)(zak,n(l)al,k(sl)) <Zak,7r(n)8l,k(sn)>
k k

eSS,
= det((Zakjalk(si)> ) =det(M - A) = (detA)d.
k ij

2. Let B be the Borel subgroup @ consisting of all invertible upper triangular matri-
ces. ClearlyB C P. Sinced is a semiinvariant foP, the Borel subgrouB acts on the
line Kd through a rational character, sayLet T be as in Section 2.3, a maximal torus of
G contained inB. We need to determine the weightafwith respect tal'. Note that the
maximal unipotent subgroug™ of B acts trivially onKd.

Let X (T) denote the lattice of rational charactersTafFori € {1,...,n} we denote
by ¢; the rational character diéty, ..., A,) — A; of T. It is well known thatX(T) is a
freeZ-module withey, ..., s, as a basis, andl = {¢; — ¢; | i # j} is the set of roots of;
with respect tol'. For 1<i <n — 1 pute; = ¢&; — g;41. It is well known thatX' is a root
system of typeA,_; in its R-span inR ®7 X (T) and, moreoverys, ..., a,—1 form the
basis of simple roots of’ relative toB. We denote the corresponding fundamental weights
by w1, ..., Op—-1.

From the fact that;; has weighte; — ¢; relative to7 it follows that 9;; has weight
&; — €. This implies that all summands in (4) have the safrereight} ! ;(e1 — &) =
ne1— Y i_4 & which is therefore also thE-weight ofd. Using Bourbaki’s tables itis now
easy to observe that|; = nw1; see [2].

3. Now we will show that/ is irreducible. Letd = f;"*--- ;""" be the prime factori-
sation ofd in the factorial ringK[g]. Sinced is homogeneous, so are gfl. By the
uniqueness of prime factorisation, the groBppermutes the lineX f1, ..., Kf,. Since
B is connected, eacl is a semiinvariant foB. Let x; denote the character &f through
which B acts onK f;.

Observe that all weights of th&-moduleK [g] are in the root lattice of. SinceU™
fixes f;, it must be thaty; |7 = Z’};}ki,jwj where allk; ; are nonnegative integers; see,
e.g., [13, Proposition 11.2.6]. The prime factorisationdfind the concluding remark in
part 2 of this proof yield

r n—1
nm:me(zki,jw.f) z(zmkl,)wf
i=1 j=1

j=1

mi

Since allm; are strictly positive, we obtain that=Y";_; m;k; 1 andk; ; =0forall j > 1.
Since ally;|r = k; 11 are in the root lattice o, it must be that | k; 1 for all i. So there
is j such that; ;1 =n, m; =1 andk; 1 =0 fori # j. In other wordsd = d1d> whered;
is amrredumble semiinvariant forB andd> is ahomogeneoupolynomial function ong
invariant undef U+ = B.

On the other hand, it is well known th&t[g]® = K[g]¢ (this is immediate from the
completeness of the flag variety/B). Hencedz € K[s1, ..., s,]. Sinces;(xg) = 0 for
all i, Lemma 3 shows thaf, is a nonzero scalar. We conclude tldats irreducible as
desired. O



A. Premet, R. Tange / Journal of Algebra 294 (2005) 177-195 189

Corallary. If p {n, then the polynomial functiod’ is irreducible inK [s(,].

Proof. Let G = GL,(K). The restriction magX[gl,] — K[s[,] is G-equivariant. As in
parts 1 and 2 of the previous proof one proves tHas a semiinvariant fo® of weight
nw1. The argument in part 3 then shows thats irreducible. O

4.4. We will need a result from Commutative Algebra often referred tiNagata’s
lemmasee [9, Lemma 19.20], for example. It asserts the following:i&a prime element
of a Noetherian integral domaiisuch thatS[x 1] is factorial, thens is factorial.

Theorem 2. The centre ot/ (g) is a unique factorisation domain.

Proof. 1. Supposeg = gl,,, wheren > 2, and setlyg = n(0(d)). It is immediate from (3)
that Z[dgl] is isomorphic to a localisation of a polynomial algebra in divariables.

Since any localisation of a factorial ring is again factorjﬁldo_l] is a unique factorisation
domain. We claim thatlp is a prime element of. Our remarks in Sections 2.1 and 2.2
show that g¢dp) = 0(d?) and that

or(Z/(do)) = S(@)%/(0(d?)) = K[g]®/(d?).

Hence the claim will follow if we establish tha& [g]?/(d?) has no zero divisors; see
Section 2.1 for more detail.

By our remarks in the proof of Proposition 3, the semiinvaridhtis weighty |7 = nar
relative toT. So x|r ¢ pX(T), for nwy is indivisible in X (T). It follows that the Lie
algebrah = Lie T does not annihilatel. As a resultd ¢ K[g]?. So Proposition 3 and
Lemma 2 yield thatd? is an irreducible element of the factorial rifg[g]?. But then
K[g]?/(d?) has no zero divisors, as wanted. Thigsis a prime element of. Applying
Nagata’s lemma we finally deduce tHais factorial in the present case.

2. Supposey = sl, and p tn. Theng = [g, g]. For the moment we leT’ denote the
group of all diagonal matrices in Gland we puly = T N SL,,(K). The restriction homo-
morphismX (T) — X (Tp) induces an isomorphism of root systems. We denote the images
of the o; and @w; under this isomorphism by the same symbols. Now the weight lattice
of the root system¥’ coincides with the character grodf(7p). By the proof of Propo-
sition 3d’ has weighthaw relative toTp. Sincep 1 n, we havenwi ¢ pX(Tp). So the
Lie algebral’ = Lie Tp does not annihilaté’, forcingd’ ¢ K[g]?. In view of Corollary to
Proposition 1 this shows that’)? is a prime element of the factorial rinkj[g]°.

Now setdy = n(6(d’)). Repeating the argument from the beginning of part 1 of this
proof we now see that; is a prime element of. A version of (3) forg = sl,, with p {n
implies thatZ[(d(’,)‘l] is a unique factorisation domain. But then saZisby Nagata’s
lemma, completing the proof.O

5. P-semiinvariants of the coordinatering of gl,,

ForG =GL,(K) we letT, B and P be as in Section 4.3, and we denoteXy(T) the
set of dominant characters Bfwith respect taB. Let B~ be the Borel subgroup @ that
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consists of all invertible lower triangular matrices. Givea X+ (7) we let incg, (1) and
V(1) denote the induced module and the Weyl moduledarorresponding ta; see [13]
for more detail. In this section we investigate the following problem:

what is the smallest: for whichHomg, (V (n@1), S™(gl}})) # 0?

We will solve this problem by using some results of Section 4 and the following result
of Donkin which is a modular version of Theorem 11 in [17].

Theorem 3 [7, Theorem 2.2]Assume that eithe& = GL,(K) for somen > 1 or that G

is almost simple, simply connected apds good. Therk [g] has a(K[g]®, G)-module
filtration 0= Ag € A1 C - - - such that for some labellinky, Ao, ... of X T(T) with A; < Aj

fori < j, we have

Ai/Ai1ZE®K[gl%, izl
as(K[g]%, G)-modules, wheré; is the direct sum adimind§_(1;,)” copies ofnd$_(1,).

Remark. Itis known that in(g, ()T #£0ifand only if A is dominant and in the root lattice
of G relative toT .

Proposition 4. Let G be as in Theorer. For everyu € X+ (T), the weight spaca’[g]fj+
of the invariant aIgebraK[g]U+ is a free module of randim indg_ ()T overK(gl©.

Proof. First we make two general observations.

1. Let F be a functor between abelian categories such that the exactness af 6>
N — P — 0 implies that of F(M) — F(N) — F(P). ThenF has the following prop-
erty: if for an objectM and a sub-objecV we haveF(N) =0 andF(M/N) =0, then
F (M) = 0. For example, the right-derived functors of a left-exact functor have this prop-
erty. This follows by looking at the long exact homology sequence. i left-exact, then
F has the following stronger property: if, fow and N as above F(M/N) = 0, then
F(M) = F(N).

2. Let M be a finite-dimensional rational-module. The functorsM* ® —) and
H™(G, —) commute with taking direct limits (over a right-directed preordered index set),
and hence so does the functor

Ext; (M, —) = (N — H"(G,M*® N)).
In particular this functor commutes with taking direct sums.
Let 0=Ap9 C A1 C--- andAq, Ao, ... be a filtration ofK[g] and the indexing of the

dominant characters df as given by Theorem 3. Let be the index withh ; = . We
have

Homg (V (w), ind$_ (1)) = Homg (L(1), L(A)) =0 fora # p.
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Since theG-moduleA; /A;_1 is a direct sum of copies of irﬁi(ki) andM — ij+ =
Homg (V (), —) commutes with taking direct sums we have tt'lm/Ai_l)ff+ =0 for
all i # j. Using the left-exactness of > MU™ we obtain thatA;){" = 0 for all i with
0<i < j.Furthermore, we obtainthaztal-)f{+ = (Aj)fj+ forall i with i > j and therefore,
since the functon > MY" commutes with direct limits, thek [g]Y" = (A/)Y".

By [13, Proposition 11.4.13] we have ExtV (x),ind§_(3)) =0 forall » € X (7). It
now follows, similarly as above, that %((V(u), A;)=0foralli > 0.

Using (Aj_l)llj+ =0, ExﬂG(V(u), A;_1) =0 and the exactness of the long homology
sequence, we obtain thatg]] " = ()Y is isomorphic to(A,;/A;—)Y" = (ENY" @
K[g]¢, and hence is a freE[g]“-module of rank dinind§_(w)7). O

Recall the definition of the elemedtfrom Section 4.1.

Corollary 1. LetG = GL,,(K) and letr be any nonnegative integer. Then the weight space
K[g]U+ is a freeK [g]°-module of ranklL with generatord” .

rnwy

Proof. By the tensor identity we have i@d (rnwy) = indg, (rne1) ® Kyerr, Wherek,
denotesK considered as @-module viai. Denote forM = indg, (1) the formal character
ZM dim(M,)e(w) of M by ch(A). Then clirnewi)e(det|r)” = ch(rney).

By [13, 11.2.16], all weight spaces of i@i (rne1) are one-dimensional and the weights
are the elementy_;_; a;¢; with a; € Z, and)_!_; a; = rn. Therefore, all weight spaces
of indg, (nwrp) are one-dimensional and the weights are of the fdrfh ; a;; where the
a; are integers> —r and)_"_; a; = 0. So, by the preceding propos;itiol%f,[g[,1]%;,1 is
a free K[gl, ]°“-module of rank 1. Letf be a generator of this module. SinGeacts
on gl, by homogeneous automorphismg,must be homogeneous. Writé = uf for
someu € K[g[n]G = K[s1,...,s,]. Clearly,u is homogeneous. Applying both sides of
this equation to the matrixg from Section 3.1 we see thatmust be a honzero scalar. This
shows that!” generates the moduké[gl,]¢-modulek [gl,,1." O

rnwy*

Corollary 2. The smallesin for whichHomg, (V (nw1), S™(gl}})) # 0 equalsdedd) =
n(n—1)/2.

Corollary 3. If f € K[gl,] is a semiinvariant forP, then f = gd” for someg € K[gl,1¢
andreZ..

Proof. Letyr be the character af through whichP acts onf. Thenys |7 is dominant, lies
in the root lattice ofG relative toT', and vanishes ofi N (P, P). From this it is immediate
thaty/|r = rnor for somer € Z,. But thenf lies in K[g[,,]gjm, and the result follows
from Corollary 1 to Proposition 4. O
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6. Infinitesimal invariants

Let G and P be as in Section 5, and Igt be the character af through whichP acts
on Kd. PutPo = Ker(x) andpg = Lie(Pg). In this section we will determine the invariant
algebrak [gl,,17°. For this we will need results from the previous two sections.

Theorem 4. The invariant algebraK[gl,]?° is a free K[gl,]?-module with basis
(s s dbt | 1< K < p).

Proof. We have dinpg) = dim(P) — 1 =n? —n. As in Section 3.4, we are going to apply
[20, Corollary 5.3], and we expect thatt 1 = n? — ¢y, (gl,), i.€. that

2 . —. _ 2
n“—n Ecnelgdlmgpo(x) Cpo(@) =n“—n—1

Put differently, we expect that mjpg dimj,,(x) = 1. Now K id € pg, so we need to find
anx e gl, with 3,,(x) = K id. By Section 3.1, the elemeng is regular ingl,,, and hence
3g1, (x0) is spanned by idro, .. .,ngl. Note that the vector{s»cé(el) |0<i <n}forma
basis of the column spade”. Now lety € 3,,(x0). Theny = f(xo) for some polynomial
f € K[X] of degree< n. Sincey € pg C Lie(P) we must havef (xg)(e1) € Ke1. Butthen,
by the independence ef, x(e1), ..., x"~1(e1), we havey € K id, as wanted.

Let M; be the Jacobian matrix 6f, ..., s,, d, and letJ denote the Jacobian ideal of
$1,-..,5,,d. The ideal/ is generated by alln + 1)-minors of M. To apply [20, Corol-
lary 5.3], we need to check that the variétyJ) of common zeros of has codimension
> 2 ingl,. Let Jo be the ideal generated by the elemehfsd). Clearly,V (Jo) # gl,, for
otherwised would be apth power contrary to Proposition 3. Als®,(Jo) € V (J). Fur-
thermore,V (J) \ V(Jo) € V(d), sinced - 9;;(d) € J for all i, j (to see this one should
bear in mind thaby; (d) =0 foralli <n). SoV(J) C V(Jo) UV (J + (d)) and it suffices
to prove thatV (Jo) andV (J + (d)) are of codimensior® 2 in gl,,. Note that, by Euler’s
formula, we haveZi’j £0ij(d) = (n(n —1)/2)d. So ifn(n — 1)/2 is nonzero ink, then
we haveV (J) C V(d). This will not be used in the proof.

First we will show thatV (Jp) has no irreducible components of codimension 1. In-
deed, suppose the contrary. Then there exists an irreducible regular fufiaiogl,, such
that V(f) is an irreducible component of (Jp). Since the variety/ (Jp) is a cone, so is
V(f). Since theK-span of allo;;(d) is P-stable, the connected group must stabilise
all irreducible components of (Jo). From this it follows thatf is a nonzero homoge-
neous semiinvariant af. By Corollary 3 to Proposition 4f = gd” for somer € Z. and
g € K[gl,1°%. Sincef divides alld;; (d) we have deg < degd. This yieldsr = 0, imply-
ing f € K[gl,]®%. On the other hand, it follows from the Chevalley restriction theorem
that f contains a monomial i§11, ..., &, Which containst;1. This is a contradiction,
sinced and alld;; (d) are polynomials irg;; with i > 1.

Now we will prove thatV (J + (d)) has codimensioi 2 ingl,. ASV (J +(d)) C V(d)
andd is irreducible, it suffices to find a matrix € gl,, with d(A) =0 andA ¢ V(J).
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First assume = 2. Thensy = £11 + &22, 52 = £11£00 — 10601,

1 0 0 1

M=[sl _0 } d =—£12, My=|62 —61 —§12 én|,
2 —é2 0 o -1 0

where the variables are taken in the following order; 12, £21, £22. ThenJ = (&21, 11—
&22), hence we can chooseto be the matrix uniéy 1 in this case.

Now assume > 3. Pute = ((11), ..., (rl), (n2)), and lety; denote théth component
of a. Set

n—1
A=ep11+ Zei,i+1~
i=1

The columns ol ; are indexed by the pairs, j) with 1< i, j < n.LetM, be the(n +1)-
square submatrix aff; consisting of the columns with indices fram We will show that
d(A) =0 and that the minad,, := det(M,,) of M, is nonzero afA.

SetX =}, ;&ije;, ;. From the Laplace expansion formulae for the determinant we can
deduce the following fact. Leti; and A, be subsets ofl, ..., n} with the same number
of elements. Then

- . j:det(XAl\{,-},Az\{j}) when(, j) € (A1 x A2),
9 (dell ¥, a,)) = { 0 when(, j) ¢ (A1 x Ao).

For k < n we haves, = }_ , det(X4 4) where the sum ranges over &lsubsetsA of
{1,...,n}.Letie{l,...,n}andA C {1,...,n}.
Assumed;1(det(X'4_4)) is nonzero a. Then we have:

e licA andi#n=n¢ A,
e jeA=j+leAforall jwithl<j<n-—21landj#i;
e jeA=j—1e Aforall jwith2<j<n.

It follows thatA = {1, ..., i}. Butthen(d;1s;)(A) = £8;; forall i,k € {1,...,n}.
Now assumey; (det( X4 4)) is nonzero aA. Then we have:

e licAandn ¢ A;
e jeA=j+leAforall jwith2<j<n—2andalsoforj=n—-1ifi=1,
e jeA=j—leAforall jwith2<j<nandj#i.

It follows thati # n, that A isthe(n + 1 —i)-subset{l1,i,i + 1,...,n — 1} if i #1, and
that A = {1} if i = 1. But then we have for, k € {1, ...,n} that (01;5¢)(A) =0 if k =n
and (91,,+1-isk)(A) = £8ix if k # n. In view of Eq. (4) in Section 4.3 this shows that
d(A) = 0. Furthermore,

(3a,~d)(A)=< > SgN)012(1) (52) - 01, (1—1) (S0 —1) ey al,n(n)(sn)>(A)

e,
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=£01,1(51) - 01,,—1(52) -+ - 01, n4-2—i (8i) - - - 02,2(Sp—1) - O; 01,1 (552) (A).

S0 (34;d)(A) = £(0a;01,n5n) (A) = £(0y; AU X\ (1),0\{n})) (A) Wheren denotes the set
{1,...,n}. Thisis 0 ifi = 1, asX}\(1),n\(») dOes not contaify;. Fori € {2,...,n} the
RHS equalst det( X\ (1,i},n\({1,n)) (A), Which is 0 as the first column ¥\ (1,i},n\ (1,1} (4)
is zero (we are assuming that= 3). Finally,

(0,1 d)(A) = (82,0d)(A) = £(de( X\ (1,),m\(2.0) ) (A) = £1.

We conclude that for X j < n the jth column of M, (A) has+1 at its jth position
and zeros elsewhere, and that the last columifA) has+1 at its last position. Hence
dy(A) = £1, implying thatV (J) has codimensio 2 in gl,,. We have thus checked that
the action ofpp on K|[gl,] satisfies the conditions of Corollary 5.3 in [20]. The result
follows. O
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