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Abstract

Let g be a Lie algebra over an algebraically closed field of characteristicp > 0 and letU(g) be the
universal enveloping algebra ofg. We prove in this paper forg = gln andg = sln that the centre o
U(g) is a unique factorisation domain and its field of fractions is rational. Forg = sln our argument
requires the assumption thatp � n while for g = gln it works for anyp. It turned out that our two
main results are closely related to each other. The first one confirms in type A a recent conje
A. Braun and C. Hajarnavis while the second answers a question of J. Alev.
 2005 Elsevier Inc. All rights reserved.

1. Introduction

Let K be an algebraically closed field of characteristicp > 0. In this noteG denotes a
connected reductiveK-group with Lie algebrag. Mostly we will be in the situation wher
G = GLn(K) or G = SLn(K) andp � n. Let x �→ x[p] denote the canonicalpth power
map ong equivariant under the adjoint action ofG.

Let U = U(g) denote the universal enveloping algebra ofg. The groupG acts onU

as algebra automorphisms. This action extends the adjoint action ofG on g, hence pre-
serves the standard filtration(Ui)i�0 of U . The associated graded algebra gr(U) = S(g) is
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a domain, soU has no zero divisors. The centreZ of U is therefore a filteredK-algebra,
a domain, and a filteredG-module.

Let Q = Q(g) be the field of fractions ofZ. By a classical result of Zassenhaus,Z is
Noetherian and integrally closed inQ; see [23]. Moreover, tr.degK Q = dimg and the
localisationD(g) := Q ⊗Z U(g) is a central division algebra overQ of dimensionN2

whereN is the maximal dimension of irreducibleg-modules. WhenG = GLn(K) or G =
SLn(K) we haveN = pn(n−1)/2; see [14], for example. The maximal spectrumZ of the
algebraZ is called theZassenhaus varietyof g. By the above discussion, the varietyZ is
affine, irreducible and normal. Furthermore, dimZ = dimg. It is proved in [4] that unde
rather mild assumptions onp the singular points ofZ are exactly the maximal idealsm for
which (Z/mZ) ⊗Z U is not isomorphic to the matrix algebra MatN(K).

At present very little is known about the division algebraD(g) and its class in the
Brauer group ofQ. In order to get started here it will be important to address the follow
question posed to the first author by Jacques Alev.

Question (J. Alev). Is it true thatQ is K-isomorphic to the field of rational function
K(X1, . . . ,Xm) with m = dimg? In other words, is it true that the Zassenhaus varietyZ
is rational?

This is known as thecommutative Gelfand–Kirillov conjecture, see below. Until now the
answer to this question was known only in the simplest caseg = sl2. Another interesting
question related toZ was recently raised in [3] and answered positively forg = sl2 (mild
characteristic restrictions may apply).

Conjecture (A. Braun and C. Hajarnavis). The centre ofU(g) is a unique factorisation
domain.

Similar problems can be raised in the characteristic zero case as well. Here one
replaceU(g) by the quantised enveloping algebraUε(gC) without divided powers at a roo
of unity ε ∈ C; see [3] for more detail.

The main result of this paper is the following theorem which solves both problem
the modular case forg = gln and forg = sln with p � n.

Theorem. If g = gln or g = sln andp � n, then the centre ofU(g) is a unique factorisation
domain and its field of fractions is rational.

One expects this result to extend to the Lie algebrasg isomorphic tosln, pgln andpsln
with p | n. However, to obtain such an extension by our methods one would need an e
description of the invariant algebraS(g)g, which is currently unavailable. As for the L
algebras of other types, both problems remain open and new ideas are required he

Our proof of the unique factorisation property of the centre ofU(gln) relies on the irre-
ducibility of a certain polynomial functiond ∈ K[gln] semiinvariant relative to a maxima
parabolic subgroupP of GLn(K). In Section 5, we use the irreducibility ofd to describe
all semiinvariants ofP in K[gln]. In Section 6, we establish an infinitesimal version of t
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result making use of a Jacobian criterion obtained by Skryabin in [20]. It is worth rem
ing that all results of Section 5 are valid in the characteristic zero case as well (the
are essentially the same).

For the moment we drop the assumptions onK andg. TheGelfand–Kirillov conjec-
ture for g states that the fraction field ofU(g) is isomorphic to a Weyl skew fieldDn(L)

over a purely transcendental extensionL of K . The centre of the fraction field ofU(g) is
the fraction fieldQ of Z. In characteristic 0 this is proved in [6], for instance. In posit
characteristic this follows from the fact that the fraction field ofU(g) is nothing but the
division algebraD(g) introduced above. The centre ofDn(L) equalsL in characteristic
0 and in characteristicp it is generated overL by thepth powers of the standard gene
ators ofDn(L) over L. So in both cases it is rational (a purely transcendental exten
of K). Therefore the original GK-conjecture implies the ‘commutative’ GK-conjec
which states thatQ is rational.

Jacques Alev has informed us that some results of this note can be used to pr
GK-conjecture forg = gln in characteristicp. It is worth mentioning here that the origin
GK-conjecture for finite-dimensional simple Lie algebras overC remains open in all case
except in type A where it was proved by Gelfand and Kirillov themselves; see [1
seems that proving the rationality ofQ for all reductive Lie algebras might shed more lig
into this area of Lie Theory.

2. Preliminaries

2.1. Given an elementx of a commutative ringS we denote by(x) the ideal ofS
generated byx. Recall thatx is calledprime if (x) is a prime ideal ofS.

LetA be an associative ring with an ascending filtration(Ai)i∈Z. If I is a two-sided idea
of A, then the abelian groupI and the ringA/I inherit an ascending filtration fromA and
we have an embedding gr(I ) ↪→ gr(A) of graded abelian groups. If we identify gr(I ) with
a graded subgroup of the graded additive group gr(A) by means of this embedding, the
gr(I ) is a two-sided ideal of gr(A) and there is an isomorphism gr(A/I) ∼= gr(A)/gr(I );
see [1, Chapter 3, Section 2.4].

Now assume that
⋃

i Ai = A and
⋂

i Ai = {0}. For a nonzerox ∈ A we define deg(x) :=
min{i ∈ Z | x ∈ Ai} and gr(x) := x + Ak−1 ∈ gr(A)k = Ak/Ak−1 wherek = deg(x). If
gr(A) has no zero divisors, then the same holds forA and we have forx, y ∈ A \ {0}
that deg(xy) = deg(x)+deg(y), gr(xy) = gr(x)gr(y), and gr((x)) = (gr(x)). We mention
for completeness that ifA = ⊕

n∈Z
An is a graded ring, then(An)n∈Z = (

∑
k�n Ak)n∈Z

defines an ascending filtration ofA with the two properties mentioned above andA ∼=
gr(A) as algebras.

2.2. Thep-centreZp of U is defined as the subalgebra ofU generated by all elemen
xp −x[p] with x ∈ g. It is well known (and easily seen) thatZp ⊆ Z is a polynomial algebra

in x
p
i − x

[p]
i where{xi} is any basis ofg. For a vector spaceV overK theFrobenius twist

V (1) of V is defined as the vector space overK with the same additive group asV and
with scalar multiplication given byλ · x = λ1/px. Note that the linear functionals and t
polynomial functions onV (1) are thepth powers of those ofV . The Frobenius twist of a
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K-algebra is defined similarly (only the scalar multiplication is modified). Following
we defineη :S(g)(1) → Zp by settingη(x) = xp − x[p] for all x ∈ g; see also [19]. This is
aG-equivariant algebra isomorphism, hence it restricts to an algebra isomorphism

η :
(
S(g)G

)
(1) = (

S(g)(1)
)G ∼−−→ ZG

p .

We have gr(η(x)) = xp for all x ∈ g \ {0}. Furthermore the associated graded algebr
the filtered algebraZp ⊂ U is G-equivariantly isomorphic to the graded subalgebraS(g)p

of S(g).

2.3. In the remainder of this note we assume thatG = GLn(K) or G = SLn(K) and
p � n. In this case Theorem 1.4 in [10] shows that the filteredG-modulesU(g) andS(g) are
isomorphic (the isomorphism in [10] is obtained by composing the Mil’ner mapφ :U →
S(U) with aG-equivariant projection fromU ontog). Consequently, eachG-moduleUn−1
has aG-invariant direct complement inUn. This implies that the associated graded algeb
of UG andZ are isomorphic toS(g)G andS(g)g, respectively.

The trace formβ :gln × gln → K associated with the vector representation of GLn(K)

is nondegenerate and the same holds for its restriction tosln asp � n. Let θ :S(g∗) → S(g)

denote theG-equivariant algebra isomorphism induced byβ (it takesf ∈ g∗ to a unique
x ∈ g such thatf (y) = β(x, y) for all y ∈ g).

Let h be the subalgebra of all diagonal matrices ingln andh′ = h ∩ sln. Let n+ (respec-
tively n−) be the subalgebra of all strictly upper (respectively lower) triangular mat
in g. To unify notation we sett = h if g = gln and t = h′ if g = sln. Then we have
g = n− ⊕ t ⊕ n+. Also, t = LieT whereT is the group of all diagonal matrices inG.
Furthermore,t is the orthogonal complement ton− ⊕ n+ with respect toβ.

2.4. The Weyl group action induced by the adjoint action of the normaliserNG(T ) on
t is nothing but the restriction tot of the permutation action of the symmetric groupSn

on the space of diagonal matricesh. In [16, Theorem 4], Kac and Weisfeiler proved th
a modular version of the Chevalley restriction theorem holds for the coadjoint acti
any simple, simply connected algebraicK-group. Their arguments are known to work f
all connected reductiveK-groups with simply connected derived subgroups. In particu
they apply to our groupG. Sinceθ :K[g] → K[g∗] is a G-equivariant algebra isomo
phism, Theorem 4 in [16] implies that the restriction mapK[g] → K[t] induces an algebr
isomorphismK[g]G ∼−→ K[t]Sn .

For 1� i � n definesi ∈ K[gln]GLn by settingsi(x) = tr(
∧i

x) for all x ∈ gln, where∧i
x is theith exterior power ofx. Then

χx(X) = Xn +
n∑

i=1

(−1)isi(x)Xn−i

is the characteristic polynomial ofx. Let {ei,j | 1 � i, j � n} be the basis ofgln consisting
of the matrix units and let{ξij | 1� i, j � n} be the corresponding dual basis ingl∗n. To ease
notation identify eachξii with its restriction to the diagonal subalgebrah. For 1� i � n the
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restriction ofsi to h is then theith elementary symmetric functionσi in ξ11, ξ22, . . . , ξnn.
By the theorem on symmetric functions,σ1, . . . , σn are algebraically independent and ge
erate the invariant algebraK[h]Sn . Our discussion in Section 2.3 now shows that thesi ’s
are algebraically independent and generate the invariant algebraK[gln]GLn .

Supposep � n. Given a polynomial functionf on gln we denote byf ′ its restriction to
sln. The span of allξii − ξjj is anSn-invariant direct complement to the lineKσ1 in h∗,
hence theK-subalgebra generated by allξii − ξjj is anSn-invariant direct complemen
to the ideal ofK[h] generated byσ1. From this it is immediate that the restriction m
K[h] → K[h′] induces an epimorphismK[h]Sn � K[h′]Sn whose kernel is the ideal o
K[h]Sn generated byσ1. Since the subalgebra ofK[h]Sn generated byσ2, . . . , σn is a
direct complement inK[h]Sn to this ideal, we deduce that the restrictionss′

2|h′ , . . . , s′
n|h′

are algebraically independent and generateK[h′]Sn . But thens′
2, . . . , s

′
n are algebraically

independent and generate the invariant algebraK[sln]SLn by our discussion in Section 2.
Under theG-equivariant isomorphismθ :S(g∗) ∼−→ S(g) and the inducedSn-equivari-

ant isomorphismS(t∗) ∼−→ S(t), the restriction mapS(g∗) → S(t∗) corresponds to th
projection homomorphismΦ :S(g) → S(t) defined as follows: if we identifyS(g) with
S(n−)⊗S(t)⊗S(n+), thenΦ(x ⊗h⊗ y) = x0hy0 wheref 0 denotes the zero degree p
of f ∈ S(g). By the above,Φ induces an algebra isomorphismS(g)G ∼= S(t)Sn .

2.5. In [16], Kac and Weisfeiler also proved a noncommutative version of the Ch
ley restriction theorem. Again the arguments in [16] are known to generalise to al
nected reductiveK-groups with simply connected derived subgroups; see [14, Sectio
In particular, they apply to our groupG.

Let Ψ :U = U(n−)⊗U(t)⊗U(n+) → U(t) = S(t) be the linear map takingx ⊗h⊗ y

to x0hy0, whereu0 denotes the scalar part ofu ∈ U with respect to the decompositio
U = K1⊕ U+ whereU+ is the augmentation ideal ofU . The restriction ofΨ to UNG(T )

is an algebra homomorphism.
For G = GLn defineρ ∈ h∗ as

∑n−1
i=1 (n − i)ξii , whereξii is the functionalA �→ Aii

and for G = SLn let ρ denote the corresponding restriction. In the latter caseρ is the
differential of the character ofT that equals the half sum of the positive roots. Thenρ is
as in [14, Section 9.2]. Define the shift homomorphismγ :S(t) → S(t) by settingγ (h) =
h−ρ(h) for all h ∈ t. In [16, Section 8] there was defined an action of the Weyl groupW on
S(t) = K[t∗] which is called the dot action in [14]. The dot action ofW on S(t) is related
to the natural action as follows:w� = γ −1 ◦ w ◦ γ . It follows from [14, Theorem 9.3] tha
γ ◦Ψ induces an algebra isomorphism betweenUG andS(t)Sn . See also [16, Theorem 1
As a consequence,UG is a polynomial algebra in dimt variables.

Using the descriptions ofΦ andΨ and a PBW-basis it follows that forx ∈ U \ {0} with
Φ(gr(x)) = 0 we haveΨ (x) = 0 and

gr
(
γ
(
Ψ (x)

)) = gr
(
Ψ (x)

) = Φ
(
gr(x)

)
.

By the injectivity of the restriction ofΦ to S(g)G, the displayed equalities hold fo
all x ∈ UG. Thus we can deduce the injectivity ofγ ◦ Ψ :UG → S(t)Sn from that of
Φ :S(g)G → S(t)Sn . The same applies to the surjectivity; see the proof of Propositio
in [22].
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3. Invariants for the Lie algebra

3.1. The aim of this section is to put together all results on Lie algebra invariants
will be needed later on. The results in Sections 3.1, 3.2 and 3.5 are known for red
groups satisfying certain standard hypotheses, but their proofs are spread over the li
(and folklore); see [5,8,10,15, Section 7,16,22], and the references therein.

Given x ∈ g we denote byzg(x) the centraliser ofx in g. An elementx ∈ g is called
regular if dim zg(x) = dimt. It is well known and not hard to see that dimzg(x) � dimt

for all x ∈ g.1 Moreover, the setgreg of all regular elements ing is nonempty and Zarisk
open ing. Furthermore, Linear Algebra shows thatx is regular ingln if and only if the
minimal polynomial ofx equalsχx(X), which happens if and only if the column spaceKn

is a cyclicK[x]-module.
The first result we need is a modular version of Kostant’s differential criterion of r

larity [17]. It is essentially due to Veldkamp [22].

Lemma 1. For x ∈ gln the following are equivalent:

(1) the elementx is regular;
(2) the differentialsdxs1, . . . ,dxsn are linearly independent.

Proof. That the independence of dxs1, . . . ,dxsn implies the regularity ofx is proved
in [22, Section 7]. The proof requires a lemma on the invariant algebraK[g]G [22,
Lemma 7.2], the fact that the semisimple irregular elements ofg form a dense subset i
g \ greg [22, Proposition 4.9], and a result from [2, Proposition 6, Chapter 5, Section
All these are valid forg = gln.

That the regularity ofx implies the independence of dxs1, . . . ,dxsn is much easier to
prove. Givena = (a1, . . . , an) ∈ Kn we set

xa =




a1 a2 · · · an−1 an

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


 .

Eachxa is regular ingln as the minimal polynomial ofxa equalsXn − ∑n
i=1 aiX

n−i . The
setS = {xa | a ∈ Kn} is ann-dimensional affine subspace ingln through the pointx0. The
restriction toS of the morphismx �→ (s1(x), . . . , sn(x)) is an isomorphism ofS ontoAn.
From this it is immediate that the differentials dxs1, . . . ,dxsn are linearly independent fo
all x ∈ S . On the other hand, every matrixx whose minimal polynomial equalsχx(X) is
similar to a matrix fromS . Hence these differentials are independent for all regularx. �

1 As in the group case, take a Borel subgroupB of G with x ∈ Lie(B) and consider the morphismB →
Lie(B,B) sendingg ∈ B to (Adg)(x) − x ∈ Lie(B,B); see [21, p. 1]



A. Premet, R. Tange / Journal of Algebra 294 (2005) 177–195 183

of

nt.
of

s

the
e this
ariant
stricted

l
e

t

of
3.2. Now we look at the regular elements insln. Recall the notational conventions
Section 2.4. It is immediate from the definition thatx ∈ gln is regular if and only so is
x + λIn for anyλ ∈ K .

Corollary. Supposep � n. For x ∈ sln the following are equivalent:

(1) the elementx is regular insln;
(2) the elementx is regular ingln;
(3) the differentialsdxs

′
2, . . . ,dxs

′
n are linearly independent.

Proof. We havezgln
(x) = zsln(x) ⊕ KIn. This shows that (1) and (2) are equivale

The differentials dxs1, . . . ,dxsn are independent if and only so are the restrictions
dxs2, . . . ,dxsn to sln, the kernel of dxs1 = s1. The equivalence of (2) and (3) now follow
from Lemma 1. �

3.3. As mentioned in the introduction, our proof of the main theorem will rely on
following proposition communicated to us by S. Skryabin. We were unable to trac
result in the literature. Although it resembles strongly one of the basic facts of the inv
theory of groups, it also captures some essential features of the invariant theory of re
Lie algebras.

Recall that the coordinate algebraK[V ] of a finite-dimensional vector spaceV overK
is a unique factorisation domain. The algebraK[V ] ∼= ⊕

i�0 Si(V ∗) is graded andgl(V )

acts onK[V ] as homogeneous derivations of degree 0. Therefore,K[V ]p ⊆ K[V ]gl(V ).

Proposition 1. Let L be a Lie algebra withL = [L,L] and letV be a finite-dimensiona
L-module. Then the invariant algebraK[V ]L is a unique factorisation domain and th
irreducible elements ofK[V ]L are thepth powers of the irreducible elements ofK[V ] not
invariant underL and the irreducible elements ofK[V ] contained inK[V ]L.

Proof. Let f be a nonzero element inK[V ]L and supposef = f1f2 wheref1, f2 ∈ K[V ]
are coprime of positive degree. Letx be any element inL. Since(x · f1)f2 = −f1(x · f2),
the uniqueness of prime factorisation inK[V ] implies that f2 divides x · f2. As
deg(x · f2) � degf2 it must be thatx · f2 = χ(x)f2 for someχ(x) ∈ K . The map
χ :L → K is a character ofL. As L = [L,L], it must be thatχ = 0. This shows tha
f1, f2 ∈ K[V ]L. Now supposef = gn for somen ∈ N. Write n = sp + r with s, r ∈ Z+
and 0� r < p. Then 0= x · f = ngn−1(x · g). For r = 0 this yieldsg ∈ K[V ]L, while for
r = 0 we havef = (gp)s with gp ∈ K[V ]L.

This shows that any irreducible element inK[V ]L is either an irreducible element
K[V ] invariant underL or apth power of an irreducible element inK[V ] \ K[V ]L. Now
the unique factorisation property ofK[V ]L follows from that ofK[V ]. �

3.4. Let X be an affine algebraic variety defined overK , and letL be a finite-dimen-
sional restricted Lie algebra together with a restricted homomorphismL → DerK K[X].
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DefineLx to be the stabiliser of the maximal idealmx of K[X] corresponding to a poin
x ∈ X. Following [20, Section 5], we put

cL(X) := max
x∈X

codimLLx.

In the situation of Section 3.3, whereX = V is a finite-dimensional restrictedL-module,
it is easy to see thatLx = {l ∈ L | l(x) = 0} for everyx ∈ V .

Lemma 2. We haveK[gln]gln = K[gln]sln for all n ∈ N. Moreover,K[gln]gln is a unique
factorisation domain and the irreducible elements ofK[gln]gln are thepth powers of the
irreducible elements ofK[gln] not invariant undergln and the irreducible elements o
K[gln] contained inK[gln]gln .

Proof. 1. Forp � n the first part of the statement is obvious asgln = sln ⊕ KIn. To tackle
it in the general case we recall our notation in Section 2.3 and setV = gln. It follows from
our remarks above that(gln)x = zgln

(x) for all x ∈ V . So the discussion in Section 3
yields thatcgln

(V ) = n2 − n. Let h be a regular element ofgln contained inh. Then we
have(gln)h = zgln

(h) = h andgln = sln + (gln)h. But thenK[gln]gln = K[gln]sln in view
of [20, Corollary 5.3].

2. The second part of the statement follows immediately from Proposition 1 if(p,n) =
(2,2), since then, as is well known,sln is perfect. To establish it in general we will slight
modify our arguments in the proof of Proposition 1. If forf ∈ K[V ]gln we havef = f1f2
with f1, f2 ∈ K[V ] coprime, then as in that proofx · f2 = χ(x)f2 for all x ∈ gln. The
characterχ :gln → K must vanish on[gln,gln] = sln. But thenf1, f2 ∈ K[V ]gln , by part 1
of this proof. The rest of the proof of Proposition 1 applies in our present situation, an
result follows. �

3.5. The statement below is known but we wanted to streamline its proof by empl
the relationship between filtered and graded algebras in a more systematic way. As
(iv) is often referred to as Veldkamp’s theorem; see [22, Theorem 3.1].

Proposition 2. Letm be the rank ofg, i.e.m = dimt, and put(t1, . . . , tm) = (s1, . . . , sn) for
g = gln and (t1, . . . , tm) = (s′

2, . . . , s
′
n) for g = sln. Defineui ∈ UG by ui = ((γ ◦ Ψ )−1 ◦

Φ)(θ(ti)) = (γ ◦ Ψ )−1(θ(ti |t)). Then the following hold:

(i) The setg \ greg is Zariski closed of pure codimension3 in g.

(ii) K[g]g is a freeK[g]p-module with basis{tk1
1 · · · tkm

m | 0� ki < p}.
(iii) S(g)g is a freeS(g)p-module with basis{θ(t1)

k1 · · · θ(tm)km | 0� ki < p}.
(iv) Z is a freeZp-module with basis{uk1

1 · · ·ukm
m | 0� ki < p}.

Proof. (i) The first assertion is proved in [22, Theorem 4.12]. The arguments there
apply tog = gln.

(ii) By Lemma 1, its Corollary and (i), the Zariski closed subset ofg consisting of
all x for which the differentials dxt1, . . . ,dxtm are linearly dependent has codimensio
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in g. The second assertion now follows from [20, Theorem 5.4] applied to the va
X = g. Arguing as in the proof of Lemma 2 one observes thatcg(X) = n2 − n in our case.
Therefore, dimX − cg(X) = m.

(iii) The third assertion follows immediately from part (ii) in view of the isomorphi
θ :K[g] ∼−→ S(g).

(iv) Recall from Sections 2.2 and 2.3 that the associated graded algebras ofZ, UG and
Zp areS(g)g, S(g)G andS(g)p , respectively. By our remarks in Sections 2.3 and 2.5
haveθ(ti) = gr(ui). The fourth assertion now follows from part (iii) by a standard induc
argument; see the proof of Theorem 3.1 in [22] for more details.�
Remark 1. It follows from Proposition 2 that the bases in (ii), (iii), (iv) are also ba
of K[g]G, S(g)G andUG over (K[g]p)G, (S(g)p)G andZG

p , respectively. This implie
thatK[g]g ∼= K[g]p ⊗(K[g]p)G K[g]G, S(g)g ∼= S(g)p ⊗(S(g)p)G S(g)G andZ ∼= Zp ⊗ZG

p

UG as algebras. The first two of these isomorphisms are known as Friedlander–P
factorisations; see [10, Theorem 4.1].

Remark 2. It also follows from Proposition 2 thatQ(g) is a finite extension of the field o
fractions ofZp

∼= S(g)(1) and hence tr.degK Q(g) = dimg.2 The analogous statements f
the fields of fractions ofK[g]g andS(g)g are obvious.

4. Proof of the main theorems

4.1. Define∂ij ∈ DerK K[gln] be setting∂ij (ξrs) = 1 if (r, s) = (i, j) and 0, otherwise
It is immediate from our discussion in Section 2.4 thatsk is the sum of all diagonal minor
of orderk of the matrix

∑
i,j ξij ei,j with entries inK[gln]. If we write eachsk as a poly-

nomial in theξij , then we obtainn equations in theξij and thesk . By the above,ξij with
one fixed row or column index are not multiplied among each other in these equatio
particular these equations arelinear in ξ11, ξ12, . . . , ξ1n.

Let R denote theFp-subalgebra ofK[gln] generated by allξij with i > 1. Set

M =




∂11(s1) ∂12(s1) . . . ∂1n(s1)

∂11(s2) ∂12(s2) . . . ∂1n(s2)
...

...
. . .

...

∂11(sn) ∂12(sn) . . . ∂1n(sn)


 , c =




ξ11
ξ12
...

ξ1n


 , s =




s1
s2
...

sn


 .

By the preceding paragraph the matrixM has entries inR and the following vector equa
tion holds:

M · c = s + r, whereM ∈ gln(R) andr ∈ Rn. (1)

2 This also follows from a version of the PWB theorem; see [12, Chapter 5, Section 7, Lemma 4].
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Clearly,M is a matrix with functional entries. HenceM(x) ∈ gln is well defined for any
x ∈ gln. Let d = detM , a regular function ong. Recall from Section 3.1 the definition o
the affine subspaceS = {xa | a ∈ Kn} of gln.

Lemma 3. For all a ∈ Kn we haved(xa) = (−1)�n/2�. In particular,d = 0.

Proof. Let ξ1, . . . , ξn be the coordinate functions onKn and let∂i be the derivation o
the coordinate ring ofKn such that∂i(ξj ) = 1 wheni = j and 0 otherwise. Then it i
easy to see that∂1j (f )(xa) = ∂j (b �→ f (xb))(a) for all f ∈ K[gln]. Furthermore, it fol-
lows from the formula displayed in Section 2.4 and our remarks in the proof of Lem
that si(xa) = (−1)i−1ai . So the(i, j)-th entry ofM(xa) equals(−1)i−1∂j (ξi). But then
M(xa) = diag(1,−1, . . . , (−1)n−1) and(detM)(xa) = (−1)�n/2�. �

4.2. Let Q denote the field of fractions ofK[g]g. It follows from Proposition 2 thatQ
is generated bym + dimg elements. Using Lemma 3 we will show thatm generators can
be made redundant here. Since tr.degKQ = dimg, this will imply that Q is rational. We
will then use a very similar method to establish the rationality ofQ.

Let F :f �→ f p denote the Frobenius endomorphism ofK[gln]. It acts componentwis
ongln(K[gln]) andK[gln]n. Note thatRF ⊂ R.

Theorem 1. BothS(g)g andZ have rational fields of fractions.

Proof. 1. First we assume thatg = gln. Applying F to both sides of (1) we get

MF · cF = sF + rF , whereM ∈ gln(R
p) andr ∈ (Rp)n. (2)

By Lemma 3, det(MF ) = dp = 0. Therefore,cF has components in theFp-subalgebra o
Q generated bysp

1 , . . . , s
p
n , (dp)−1 andξ

p
ij with i > 1. As a result,Q is generated by then2

elementss1, . . . , sn andξ
p
ij with i > 1. These elements must be algebraically indepen

because tr.degKQ = n2; see Remark 2. ThusQ is rational overK . The same assertion the
holds for the field of fractions ofS(g)g in view of theG-equivariant algebra isomorphis
θ :K[g] ∼−→ S(g).

2. Recall from Sections 2.2 and 2.4 thatη ◦ θ : K[g](1) → Zp is aG-equivariant algebra
isomorphism. Observe thatθ(ξij ) = ej,i and thatR := η(θ(R)) is theFp-subalgebra o

Zp generated by allep
i,j − e

[p]
i,j with j > 1. Lete ∈ Zn

p denote the column vector whoseith

component equalsep

i,1 − e
[p]
i,1 . Applying η ◦ θ to both sides of (1) yields

M · e = η
(
θ(s)

) + r̃, whereM ∈ gln(R) andr̃ ∈Rn. (3)

By Proposition 2,Q is generated overK by the elementsep
i,j − e

[p]
i,j andn algebraically

independent elements generatingZG. Besides, tr.degKQ = n2; see Remark 2. Sinc
η(θ(si)) ∈ ZG

p and detM = η(θ(d)) = 0, we now argue as in part 1 of this proof to dedu
thatQ is rational overK .
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3. Now assume thatg = sln andp � n. Recall our notation from Section 2.4. Applyin
the restriction homomorphismK[gln] → K[sln], f �→ f ′, to both sides of (1) we obtai
the following equations in theξ ′

ij ands′
2, . . . , s

′
n:

M ′ · c′ = s′ + r′, whereM ′ ∈ gln
(
R′) andr′ ∈ (

R′)n
.

Here M ′, c′, s′, r′ have the obvious meaning andR′ is the Fp-subalgebra ofK[sln]
generated by allξ ′

ij with i > 1. Note that we now haveθ(ξ ′
ij ) = ej,i for i = j and

θ(ξ ′
ii ) = ei,i − (1/n)In. SinceS ∩ sln = ∅, Lemma 3 shows thatd ′ = det(M ′) = 0. We

can thus repeat our arguments from parts 1 and 2 of this proof to deduce that the gen
(ξ ′

11)
p, . . . , (ξ ′

1n)
p and (e1,1 − (1/n)In)

p − (e1,1 − (1/n)In), e
p

2,1, . . . , e
p

n,1 of Q andQ,
respectively, are redundant. This proves that bothQ andQ areK-rational in the presen
case (recall that we now have one generator less and tr.degKQ = tr.degKQ = n2 − 1; see
Proposition 2 and Remark 2).�

4.3. We now turn our attention to the second problem: the unique factorisation
erty. The determinantd will play a prominent rôle here.

Proposition 3. The polynomial functiond is irreducible inK[gln].

Proof. 1. Letg = gln and letP be the maximal parabolic subgroup ofG = GLn(K) con-
sisting of all invertible matrices(λij ) with λi1 = 0 for all i > 1. As a first step, we ar
going to show thatd is a semiinvariant forP . We have

d =
∑

π∈Sn

sgn(π)∂1,π(1)(s1) · · · ∂1,π(n)(sn). (4)

The adjoint action ofG on g induces a natural action ofG on the Lie algebra DerK K[g].
The subspaceD of DerK K[g] consisting of all homogeneous derivations of degree−1
is G-stable and has{∂ij | 1 � i, j � n} as a basis. We defineD0 to be the subspace ofD
spanned by all∂1i with 1� i � n.

Let g∗
0 denote the subspace ofg∗ spanned by allξi,j with i > 1. It is easy to see tha

g∗
0 consists of all linear functionsψ on g∗ with ψ(e1,i ) = 0 for all i. As the linear span

of all e1,i is (AdP)-invariant,g∗
0 is invariant under the coadjoint action ofP on g∗. As

D0 = {D ∈ D | g∗
0 ⊂ KerD}, it follows thatg ◦ D ◦ g−1 ∈ D0 for all D ∈ D0 andg ∈ P .

ThusP acts onD0. We denote byτ the corresponding representation ofP .
Let g be any element inP and denote byA = (aij ) the matrix ofτ(g) relative to the

basis{∂1i | 1� i � n} of D0. Since eachsi is G-invariant, we have

g
(
∂1j (si)

) = (
g ◦ ∂1j ◦ g−1)(si) = (

τ(g)(∂1j )
)
(si) (1 � i, j � n).

Combining this with (4) we now obtain

g(d) =
∑

sgn(π)
(
τ(g)(∂1,π(1))

)
(s1) · · · (τ(g)(∂1,π(n))

)
(sn)
π∈Sn
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=
∑

π∈Sn

sgn(π)

(∑
k

ak,π(1)∂1,k(s1)

)
· · ·

(∑
k

ak,π(n)∂1,k(sn)

)

= det

((∑
k

akj ∂1k(si)

)
ij

)
= det(M · A) = (detA)d.

2. LetB be the Borel subgroup ofG consisting of all invertible upper triangular mat
ces. Clearly,B ⊂ P . Sinced is a semiinvariant forP , the Borel subgroupB acts on the
line Kd through a rational character, sayχ . Let T be as in Section 2.3, a maximal torus
G contained inB. We need to determine the weight ofd with respect toT . Note that the
maximal unipotent subgroupU+ of B acts trivially onKd .

Let X(T ) denote the lattice of rational characters ofT . For i ∈ {1, . . . , n} we denote
by εi the rational character diag(λ1, . . . , λn) �→ λi of T . It is well known thatX(T ) is a
freeZ-module withε1, . . . , εn as a basis, andΣ = {εi − εj | i = j} is the set of roots ofG
with respect toT . For 1� i � n − 1 putαi = εi − εi+1. It is well known thatΣ is a root
system of typeAn−1 in its R-span inR ⊗Z X(T ) and, moreover,α1, . . . , αn−1 form the
basis of simple roots ofΣ relative toB. We denote the corresponding fundamental weig
by �1, . . . ,�n−1.

From the fact thatξij has weightεj − εi relative toT it follows that ∂ij has weight
εi − εj . This implies that all summands in (4) have the sameT -weight

∑n
i=1(ε1 − εi) =

nε1 −∑n
i=1 εi which is therefore also theT -weight ofd . Using Bourbaki’s tables it is now

easy to observe thatχ |T = n�1; see [2].
3. Now we will show thatd is irreducible. Letd = f

m1
1 · · ·f mr

r be the prime factori-
sation ofd in the factorial ringK[g]. Sinced is homogeneous, so are allfi . By the
uniqueness of prime factorisation, the groupB permutes the linesKf1, . . . ,Kfr . Since
B is connected, eachfi is a semiinvariant forB. Let χi denote the character ofB through
whichB acts onKfi .

Observe that all weights of theG-moduleK[g] are in the root lattice ofΣ . SinceU+
fixesfi , it must be thatχi |T = ∑n−1

j=1 ki,j�j where allki,j are nonnegative integers; se
e.g., [13, Proposition II.2.6]. The prime factorisation ofd and the concluding remark i
part 2 of this proof yield

n�1 =
r∑

i=1

mi

(
n−1∑
j=1

ki,j�j

)
=

n−1∑
j=1

(
r∑

i=1

miki,j

)
�j .

Since allmi are strictly positive, we obtain thatn = ∑r
i=1 miki,1 andki,j = 0 for all j > 1.

Since allχi |T = ki,1�1 are in the root lattice ofΣ , it must be thatn | ki,1 for all i. So there
is j such thatkj,1 = n, mj = 1 andki,1 = 0 for i = j . In other words,d = d1d2 whered1
is an irreduciblesemiinvariant forB andd2 is ahomogeneouspolynomial function ong
invariant underT U+ = B.

On the other hand, it is well known thatK[g]B = K[g]G (this is immediate from the
completeness of the flag varietyG/B). Henced2 ∈ K[s1, . . . , sn]. Sincesi(x0) = 0 for
all i, Lemma 3 shows thatd2 is a nonzero scalar. We conclude thatd is irreducible as
desired. �
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Corollary. If p � n, then the polynomial functiond ′ is irreducible inK[sln].
Proof. Let G = GLn(K). The restriction mapK[gln] → K[sln] is G-equivariant. As in
parts 1 and 2 of the previous proof one proves thatd ′ is a semiinvariant forP of weight
n�1. The argument in part 3 then shows thatd ′ is irreducible. �

4.4. We will need a result from Commutative Algebra often referred to asNagata’s
lemma; see [9, Lemma 19.20], for example. It asserts the following: ifx is a prime elemen
of a Noetherian integral domainS such thatS[x−1] is factorial, thenS is factorial.

Theorem 2. The centre ofU(g) is a unique factorisation domain.

Proof. 1. Supposeg = gln, wheren � 2, and setd0 = η(θ(d)). It is immediate from (3)
that Z[d−1

0 ] is isomorphic to a localisation of a polynomial algebra in dimg variables.
Since any localisation of a factorial ring is again factorial,Z[d−1

0 ] is a unique factorisatio
domain. We claim thatd0 is a prime element ofZ. Our remarks in Sections 2.1 and 2
show that gr(d0) = θ(dp) and that

gr
(
Z/(d0)

) ∼= S(g)g/
(
θ
(
dp

)) ∼= K[g]g/
(
dp

)
.

Hence the claim will follow if we establish thatK[g]g/(dp) has no zero divisors; se
Section 2.1 for more detail.

By our remarks in the proof of Proposition 3, the semiinvariantd has weightχ |T = n�1
relative toT . So χ |T /∈ pX(T ), for n�1 is indivisible in X(T ). It follows that the Lie
algebrah = LieT does not annihilated . As a result,d /∈ K[g]g. So Proposition 3 an
Lemma 2 yield thatdp is an irreducible element of the factorial ringK[g]g. But then
K[g]g/(dp) has no zero divisors, as wanted. Thusd0 is a prime element ofZ. Applying
Nagata’s lemma we finally deduce thatZ is factorial in the present case.

2. Supposeg = sln andp � n. Theng = [g,g]. For the moment we letT denote the
group of all diagonal matrices in GLn and we putT0 = T ∩SLn(K). The restriction homo
morphismX(T ) → X(T0) induces an isomorphism of root systems. We denote the im
of the αi and�i under this isomorphism by the same symbols. Now the weight la
of the root systemΣ coincides with the character groupX(T0). By the proof of Propo-
sition 3 d ′ has weightn�1 relative toT0. Sincep � n, we haven�1 /∈ pX(T0). So the
Lie algebrah′ = LieT0 does not annihilated ′, forcingd ′ /∈ K[g]g. In view of Corollary to
Proposition 1 this shows that(d ′)p is a prime element of the factorial ringK[g]g.

Now setd ′
0 = η(θ(d ′)). Repeating the argument from the beginning of part 1 of

proof we now see thatd ′
0 is a prime element ofZ. A version of (3) forg = sln with p � n

implies thatZ[(d ′
0)

−1] is a unique factorisation domain. But then so isZ, by Nagata’s
lemma, completing the proof.�
5. P -semiinvariants of the coordinate ring of gln

ForG = GLn(K) we letT , B andP be as in Section 4.3, and we denote byX+(T ) the
set of dominant characters ofT with respect toB. Let B− be the Borel subgroup ofG that
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consists of all invertible lower triangular matrices. Givenλ ∈ X+(T ) we let indG
B−(λ) and

V (λ) denote the induced module and the Weyl module forG corresponding toλ; see [13]
for more detail. In this section we investigate the following problem:

what is the smallestm for whichHomGLn(V (n�1), S
m(gl∗n)) = 0?

We will solve this problem by using some results of Section 4 and the following r
of Donkin which is a modular version of Theorem 11 in [17].

Theorem 3 [7, Theorem 2.2]. Assume that eitherG = GLn(K) for somen � 1 or that G
is almost simple, simply connected andp is good. ThenK[g] has a(K[g]G,G)-module
filtration 0= A0 ⊆ A1 ⊆ · · · such that for some labellingλ1, λ2, . . . of X+(T ) with λi < λj

for i < j , we have

Ai/Ai−1 ∼= Ei ⊗ K[g]G, i � 1,

as(K[g]G,G)-modules, whereEi is the direct sum ofdim indG
B−(λi)

T copies ofindG
B−(λi).

Remark. It is known that indG
B−(λ)T = 0 if and only ifλ is dominant and in the root lattic

of G relative toT .

Proposition 4. LetG be as in Theorem3. For everyµ ∈ X+(T ), the weight spaceK[g]U+
µ

of the invariant algebraK[g]U+
is a free module of rankdim indG

B−(µ)T overK[g]G.

Proof. First we make two general observations.
1. LetF be a functor between abelian categories such that the exactness of 0→ M →

N → P → 0 implies that ofF(M) → F(N) → F(P ). ThenF has the following prop-
erty: if for an objectM and a sub-objectN we haveF(N) = 0 andF(M/N) = 0, then
F(M) = 0. For example, the right-derived functors of a left-exact functor have this p
erty. This follows by looking at the long exact homology sequence. IfF is left-exact, then
F has the following stronger property: if, forM and N as above,F(M/N) = 0, then
F(M) = F(N).

2. Let M be a finite-dimensional rationalG-module. The functors(M∗ ⊗ −) and
Hm(G,−) commute with taking direct limits (over a right-directed preordered index
and hence so does the functor

ExtmG(M,−) ∼= (
N �→ Hm(G,M∗ ⊗ N)

)
.

In particular this functor commutes with taking direct sums.
Let 0= A0 ⊆ A1 ⊆ · · · andλ1, λ2, . . . be a filtration ofK[g] and the indexing of the

dominant characters ofT as given by Theorem 3. Letj be the index withλj = µ. We
have

HomG

(
V (µ), indG−(λ)

) ∼= HomG

(
L(µ),L(λ)

) = 0 for λ = µ.

B
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Since theG-moduleAi/Ai−1 is a direct sum of copies of indG
B−(λi) andM �→ MU+

µ
∼=

HomG(V (µ),−) commutes with taking direct sums we have that(Ai/Ai−1)
U+
µ = 0 for

all i = j . Using the left-exactness ofM �→ MU+
µ we obtain that(Ai)

U+
µ = 0 for all i with

0� i < j . Furthermore, we obtain that(Ai)
U+
µ = (Aj )

U+
µ for all i with i > j and therefore

since the functorM �→ MU+
µ commutes with direct limits, thatK[g]U+

µ = (Aj )
U+
µ .

By [13, Proposition II.4.13] we have Ext1
G(V (µ), indG

B−(λ)) = 0 for all λ ∈ X+(T ). It
now follows, similarly as above, that Ext1

G(V (µ),Ai) = 0 for all i � 0.

Using (Aj−1)
U+
µ = 0, Ext1G(V (µ),Aj−1) = 0 and the exactness of the long homolo

sequence, we obtain thatK[g]U+
µ = (Aj )

U+
µ is isomorphic to(Aj/Aj−1)

U+
µ

∼= (Ei)
U+
µ ⊗

K[g]G, and hence is a freeK[g]G-module of rank dim(indG
B−(µ)T ). �

Recall the definition of the elementd from Section 4.1.

Corollary 1. LetG = GLn(K) and letr be any nonnegative integer. Then the weight sp
K[g]U+

rn�1
is a freeK[g]G-module of rank1 with generatordr .

Proof. By the tensor identity we have indG
B−(rn�1) ∼= indG

B−(rnε1) ⊗ Kdet−r , whereKλ

denotesK considered as aG-module viaλ. Denote forM = indG
B−(λ) the formal characte∑

µ dim(Mµ)e(µ) of M by ch(λ). Then ch(rn�1)e(det|T )r = ch(rnε1).

By [13, II.2.16], all weight spaces of indG
B−(rnε1) are one-dimensional and the weigh

are the elements
∑n

i=1 aiεi with ai ∈ Z+ and
∑n

i=1 ai = rn. Therefore, all weight space
of indG

B−(n�1) are one-dimensional and the weights are of the form
∑n

i=1 aiεi where the

ai are integers� −r and
∑n

i=1 ai = 0. So, by the preceding proposition,K[gln]U+
rn�1

is
a freeK[gln]GLn -module of rank 1. Letf be a generator of this module. SinceG acts
on gln by homogeneous automorphisms,f must be homogeneous. Writedr = uf for
someu ∈ K[gln]G = K[s1, . . . , sn]. Clearly,u is homogeneous. Applying both sides
this equation to the matrixx0 from Section 3.1 we see thatu must be a nonzero scalar. Th
shows thatdr generates the moduleK[gln]G-moduleK[gln]U+

rn�1
. �

Corollary 2. The smallestm for whichHomGLn(V (n�1), S
m(gl∗n)) = 0 equalsdeg(d) =

n(n − 1)/2.

Corollary 3. If f ∈ K[gln] is a semiinvariant forP , thenf = gdr for someg ∈ K[gln]G
andr ∈ Z+.

Proof. Let ψ be the character ofP through whichP acts onf . Thenψ |T is dominant, lies
in the root lattice ofG relative toT , and vanishes onT ∩ (P,P ). From this it is immediate
thatψ |T = rn�1 for somer ∈ Z+. But thenf lies in K[gln]U+

rn�1
, and the result follows

from Corollary 1 to Proposition 4. �
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6. Infinitesimal invariants

Let G andP be as in Section 5, and letχ be the character ofP through whichP acts
onKd . PutP0 = Ker(χ) andp0 = Lie(P0). In this section we will determine the invaria
algebraK[gln]p0. For this we will need results from the previous two sections.

Theorem 4. The invariant algebraK[gln]p0 is a free K[gln]p-module with basis
{sk1

1 · · · skn
n · dkn+1 | 1� ki < p}.

Proof. We have dim(p0) = dim(P )− 1 = n2 −n. As in Section 3.4, we are going to app
[20, Corollary 5.3], and we expect thatn + 1= n2 − cp0(gln), i.e. that

n2 − n − min
x∈g

dimzp0(x) = cp0(g) = n2 − n − 1.

Put differently, we expect that minx∈g dimzp0(x) = 1. NowK id ⊆ p0, so we need to find
anx ∈ gln with zp0(x) = K id. By Section 3.1, the elementx0 is regular ingln, and hence
zgln

(x0) is spanned by id, x0, . . . , x
n−1
0 . Note that the vectors{xi

0(e1) | 0 � i < n} form a
basis of the column spaceKn. Now lety ∈ zp0(x0). Theny = f (x0) for some polynomia
f ∈ K[X] of degree< n. Sincey ∈ p0 ⊆ Lie(P ) we must havef (x0)(e1) ∈ Ke1. But then,
by the independence ofe1, x(e1), . . . , x

n−1(e1), we havey ∈ K id, as wanted.
Let MJ be the Jacobian matrix ofs1, . . . , sn, d, and letJ denote the Jacobian ideal

s1, . . . , sn, d. The idealJ is generated by all(n + 1)-minors ofMJ . To apply [20, Corol-
lary 5.3], we need to check that the varietyV (J ) of common zeros ofJ has codimension
� 2 in gln. Let J0 be the ideal generated by the elements∂ij (d). Clearly,V (J0) = gln, for
otherwised would be apth power contrary to Proposition 3. Also,V (J0) ⊆ V (J ). Fur-
thermore,V (J ) \ V (J0) ⊆ V (d), sinced · ∂ij (d) ∈ J for all i, j (to see this one shoul
bear in mind that∂1i (d) = 0 for all i � n). SoV (J ) ⊆ V (J0) ∪ V (J + (d)) and it suffices
to prove thatV (J0) andV (J + (d)) are of codimension� 2 in gln. Note that, by Euler’s
formula, we have

∑
i,j ξij ∂ij (d) = (n(n − 1)/2)d . So if n(n − 1)/2 is nonzero inK , then

we haveV (J ) ⊆ V (d). This will not be used in the proof.
First we will show thatV (J0) has no irreducible components of codimension 1.

deed, suppose the contrary. Then there exists an irreducible regular functionf ongln such
thatV (f ) is an irreducible component ofV (J0). Since the varietyV (J0) is a cone, so is
V (f ). Since theK-span of all∂ij (d) is P -stable, the connected groupP must stabilise
all irreducible components ofV (J0). From this it follows thatf is a nonzero homoge
neous semiinvariant ofP . By Corollary 3 to Proposition 4,f = gdr for somer ∈ Z+ and
g ∈ K[gln]GLn . Sincef divides all∂ij (d) we have degf < degd . This yieldsr = 0, imply-
ing f ∈ K[gln]GLn . On the other hand, it follows from the Chevalley restriction theo
that f contains a monomial inξ11, . . . , ξnn which containsξ11. This is a contradiction
sinced and all∂ij (d) are polynomials inξij with i > 1.

Now we will prove thatV (J + (d)) has codimension� 2 in gln. AsV (J + (d)) ⊆ V (d)

andd is irreducible, it suffices to find a matrixA ∈ gln with d(A) = 0 andA /∈ V (J ).
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First assumen = 2. Thens1 = ξ11 + ξ22, s2 = ξ11ξ22 − ξ12ξ21,

M =
[

1 0
ξ22 −ξ21

]
, d = −ξ12, MJ =

[ 1 0 0 1
ξ22 −ξ21 −ξ12 ξ11
0 0 −1 0

]
,

where the variables are taken in the following order:ξ11, ξ12, ξ21, ξ22. ThenJ = (ξ21, ξ11−
ξ22), hence we can chooseA to be the matrix unite1,1 in this case.

Now assumen � 3. Putα = ((11), . . . , (n1), (n2)), and letαi denote theith componen
of α. Set

A = en−1,1 +
n−1∑
i=1

ei,i+1.

The columns ofMJ are indexed by the pairs(i, j) with 1� i, j � n. LetMα be the(n+1)-
square submatrix ofMJ consisting of the columns with indices fromα. We will show that
d(A) = 0 and that the minordα := det(Mα) of MJ is nonzero atA.

SetX = ∑
i,j ξij ei,j . From the Laplace expansion formulae for the determinant we

deduce the following fact. LetΛ1 andΛ2 be subsets of{1, . . . , n} with the same numbe
of elements. Then

∂ij

(
det(XΛ1,Λ2)

) =
{±det

(
XΛ1\{i},Λ2\{j}

)
when(i, j) ∈ (Λ1 × Λ2),

0 when(i, j) /∈ (Λ1 × Λ2).

For k � n we havesk = ∑
Λ det(XΛ,Λ) where the sum ranges over allk-subsetsΛ of

{1, . . . , n}. Let i ∈ {1, . . . , n} andΛ ⊆ {1, . . . , n}.
Assume∂i1(det(XΛ,Λ)) is nonzero atA. Then we have:

• 1, i ∈ Λ, andi = n ⇒ n /∈ Λ;
• j ∈ Λ ⇒ j + 1∈ Λ for all j with 1� j � n − 1 andj = i;
• j ∈ Λ ⇒ j − 1∈ Λ for all j with 2� j � n.

It follows thatΛ = {1, . . . , i}. But then(∂i1sk)(A) = ±δik for all i, k ∈ {1, . . . , n}.
Now assume∂1i (det(XΛΛ)) is nonzero atA. Then we have:

• 1, i ∈ Λ andn /∈ Λ;
• j ∈ Λ ⇒ j + 1∈ Λ for all j with 2� j � n − 2 and also forj = n − 1 if i = 1;
• j ∈ Λ ⇒ j − 1∈ Λ for all j with 2� j � n andj = i.

It follows that i = n, thatΛ is the(n + 1 − i)-subset{1, i, i + 1, . . . , n − 1} if i = 1, and
thatΛ = {1} if i = 1. But then we have fori, k ∈ {1, . . . , n} that (∂1i sk)(A) = 0 if k = n

and (∂1,n+1−i sk)(A) = ±δik if k = n. In view of Eq. (4) in Section 4.3 this shows th
d(A) = 0. Furthermore,

(∂αi
d)(A) =

( ∑
sgn(π)∂1,π(1)(s1) · · · ∂1,π(n−1)(sn−1)∂αi

∂1,π(n)(sn)

)
(A)
π∈Sn
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Boston,

. Broer
er. C,
= ±∂1,1(s1) · ∂1,n−1(s2) · · · ∂1,n+1−i (si) · · · ∂1,2(sn−1) · ∂αi
∂1,n(sn)(A).

So (∂αi
d)(A) = ±(∂αi

∂1,nsn)(A) = ±(∂αi
det(Xn\{1},n\{n}))(A) wheren denotes the se

{1, . . . , n}. This is 0 if i = 1, asXn\{1},n\{n} does not containξ11. For i ∈ {2, . . . , n} the
RHS equals±det(Xn\{1,i},n\{1,n})(A), which is 0 as the first column ofXn\{1,i},n\{1,n}(A)

is zero (we are assuming thatn � 3). Finally,

(∂αn+1d)(A) = (∂2,nd)(A) = ±(
det

(
Xn\{1,n},n\{2,n}

))
(A) = ±1.

We conclude that for 1� j � n the j th column ofMα(A) has±1 at itsj th position
and zeros elsewhere, and that the last column ofMα(A) has±1 at its last position. Henc
dα(A) = ±1, implying thatV (J ) has codimension� 2 in gln. We have thus checked th
the action ofp0 on K[gln] satisfies the conditions of Corollary 5.3 in [20]. The res
follows. �
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