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Summary. Let k be an algebraically closed field of characteristic p > 0 and
let G be a symplectic or general linear group over k. We consider induced
modules for G under the assumption that p is bigger than the greatest
hook length in the partitions involved. We give explicit constructions of left
resolutions of induced modules by tilting modules. Furthermore, we give
injective resolutions for induced modules in certain truncated categories.
We show that the multiplicities of the indecomposable tilting and injective
modules in these resolutions are the coefficients of certain Kazhdan-Lusztig
polynomials. We also show that our truncated categories have a Kazhdan-
Lusztig theory in the sense of Cline, Parshall and Scott. This builds further
on work of Cox-De Visscher and Brundan-Stroppel.

Introduction

In this paper we study modules for the general linear group GLn and for the
symplectic group Spn. This is a continuation of [8] (GLn) and [6] (Spn) where
we described good filtration multiplicities in indecomposable tilting modules
and decomposition numbers in terms of certain cap or cap-curl diagrams and
codiagrams. In the present paper we want to use the same combinatorics to
define certain Kazhdan-Lusztig polynomials which we then use to give explicit
constructions of left resolutions of induced modules by tilting modules and of
injective resolutions for induced modules in certain truncated categories. This
is based on work of Cox-De Visscher [3] and Brundan-Stroppel [1]. Throughout
we assume that p is bigger than the greatest hook length in the partitions
involved.

The paper is organised as follows. In Section 1.1 we describe the necessary
background from the theory of reductive groups and their representations and
recall some notation and an important result from [8] and [6] about a quasi-
hereditary algebra for the partial order ⪯. In Section 1.2 we recall the notions
of arrow diagrams and cap and cap-curl diagrams from [8] and [6]. Then we
discuss some combinatorial tools to characterise the partial order ⪯ in terms
of arrow diagrams, and finally we discuss cap and cap-curl diagrams associated
to two weights and the codiagram versions. In Section 1.3 we recall the defini-
tion of certain translation functors and, in the case of Spn, refined translation
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functors, and we state two important results from [8] and [6]: Proposition 1 on
“translation equivalence” and Proposition 2 on “translation projection”.

In Section 2 we introduce the Kazhdan-Lusztig polynomials dλµ and pλµ
which are characteristic p analogues of the equally named polynomials in [1]
and [3]. We state and prove certain elementary properties of these polynomi-
als. We do the same for the polynomials eλµ and rλµ. The main properties
are the recursive relations in Lemma 1 and Proposition 3. In Remark 3.3 we
show that our polynomials are products of two more familiar, combinatori-
ally defined, Kazhdan-Lusztig polynomials as in [3] and, in the GLn-case, [1].
Our polynomials are not compatible with the parabolic setup (Wp,W ) from
Lusztig’s conjecture, but with (Wp(As1+s2−1),W (As1−1)×W (As2−1)) for GLn

and (Wp(Ds),W (As−1)) for Spn.
In Section 3 we show that the coefficients of the polynomials pλµ are the

multiplicities of indecomposable tilting modules in certain finite left tilting res-
olutions of induced modules, see Theorem 1. Furthermore, we show that the
coefficients of the polynomials rλµ are the multiplicities of indecomposable in-
jective modules in certain finite injective resolutions of induced modules in
certain truncated categories, see Theorem 3. These are analogues of results
in [1] and [3]. We also show that the categories CΛ that we consider have a
Kazhdan-Lusztig theory in the sense of Cline, Parshall and Scott [2]. This
means that the dimensions of the ExtiG(L(λ), L(µ)) can be espressed in terms
of our polynomials rλµ.

In Section 4 we show that when we fix the residue of n mod p, we can derive
a stability result for arrow diagrams when p ≫ 0. This shows in particular
that our results [8, Cor to Thm 6.1 and Prop 8.3] and [6, Cor to Thm 6.1]
on the decomposition numbers of the walled and ordinary Brauer algebra in
characteristic p coincide for p ≫ 0 with the description of the decomposition
numbers of the walled and ordinary Brauer algebra in characteristic 0 from Cox
and de Visscher [3, Thm 4.10 and 5.8].

1. Preliminaries

1.1. Reductive groups. First we recall some general notation from [6] and
[8]. Throughout this paper G is a reductive group over an algebraically closed
field k of characteristic p > 0, T is a maximal torus of G and B+ is a Borel
subgroup of G containing T . We denote the group of weights relative to T , i.e.
the group of characters of T , by X. For λ, µ ∈ X we write µ ≤ λ if λ − µ is
a sum of positive roots (relative to B+). The Weyl group of G relative to T
is denoted by W and the set of dominant weights relative to B+ is denoted
by X+. In the category of (rational) G-modules, i.e. k[G]-comodules, there
are several special families of modules. For λ ∈ X+ we have the irreducible
L(λ) of highest weight λ, and the induced module ∇(λ) = indGBkλ, where B
is the opposite Borel subgroup to B+ and kλ is the 1-dimensional B-module
afforded by λ. The Weyl module and indecomposable tilting module associated
to λ are denoted by ∆(λ) and T (λ). To each G-module M we can associate
its formal character chM =

∑
λ∈X dimMλe(λ) ∈ (ZX)W , where Mλ is the

weight space associated to λ and e(λ) is the basis element corresponding to λ
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of the group algebra ZX of X over Z. Composition and good or Weyl filtration
multiplicities are denoted by [M : L(λ)] and (M : ∇(λ)) or (M : ∆(λ)). For a
weight λ, the character χ(λ) is given by Weyl’s character formula [5, II.5.10].
If λ is dominant, then ch∇(λ) = ch∆(λ) = χ(λ). The χ(λ), λ ∈ X+, form a
Z-basis of (ZX)W . For α a root and l ∈ Z, let sα,l be the affine reflection of
R⊗Z X defined by sα,l(x) = x− aα, where a = ⟨x, α∨⟩ − lp. Mostly we replace
⟨−,−⟩ by a W -invariant inner product and then the cocharacter group of T is
identified with a lattice in R ⊗Z X and α∨ = 2

⟨α,α⟩α. We have s−α,l = sα,−l

and the affine Weyl group Wp is generated by the sα,l. Choose ρ ∈ Q ⊗Z X
with ⟨ρ, α∨⟩ = 1 for all α simple and define the dot action of Wp on R⊗Z X by
w · x = w(λ+ ρ)− ρ. The lattice X is stable under the dot action. The linkage
principle [5, II.6.17,7.2] says that if L(λ) and L(µ) belong to the same G-block,
then λ and µ are Wp-conjugate under the dot action. We refer to [5] part II for
more details.

Unless stated otherwise, G will be the general linear group GLn or the sym-
plectic group Spn, n = 2m, given by Spn = {A ∈ GLn |ATJA = J}, where

J =

[
0 Im

−Im 0

]
and AT is the transpose of A. The natural G-module kn is de-

noted by V . Partitions with parts < 10 may be written in “exponential form”:
(5, 5, 4, 3, 2) is denoted by (52432), where we sometimes omit the brackets.

First assume G = GLn. We let T be the group of diagonal matrices in GLn.
Then X is naturally identified with Zn such that the i-th diagonal coordinate
function corresponds to the i-th standard basis element εi of Zn. We let B+ be
the Borel subgroup of invertible upper triangular matrices corresponding to the
set of positive roots εi − εj , 1 ≤ i < j ≤ n. Then a weight in Zn is dominant if
and only if it is weakly decreasing. Such a weight λ can uniquely be written as

[λ1, λ2]
def
= (λ1

1, λ
1
2, . . . , 0, . . . , 0, . . . ,−λ2

2,−λ2
1)

where λ1 = (λ1
1, λ

1
2, . . .) and λ2 = (λ2

1, λ
2
2, . . .) are partitions with l(λ1)+ l(λ2) ≤

n. Here l(ξ) denotes the length of a partition ξ. So X+ can be identified
with pairs of partitions (λ1, λ2) with l(λ1) + l(λ2) ≤ n. We will also identify
partitions with the corresponding Young diagrams. For s1, s2 ∈ {1, . . . , n} with
s1 + s2 ≤ n we denote the subgroup of Wp generated by the sα,l, α = εi − εj ,
i, j ∈ {1, . . . , s1, n− s2+1, . . . , n} by W s1,s2

p . This is the affine Weyl group of a
root system of type As1+s2−1. The group W acts on Zn by permutations, and
Wp

∼= W ⋉ pX0, where X0 = {λ ∈ Zn | |λ| = 0} is the type An−1 root lattice
and |λ| =

∑n
i=1 λi. Note that W s1,s2

p
∼= W s1,s2 ⋉ pXs1,s2

0 , where Xs1,s2
0 consists

of the vectors in X0 which are 0 at the positions in {s1 + 1, . . . , n − s2}, and
W s1,s2 = Sym({1, . . . , s1, n− s2 + 1, . . . , n}). We will work with

ρ = (n, n− 1, . . . , 1) .

It is easy to see that if λ, µ ∈ X are Wp-conjugate and equal at the positions in
{s1 + 1, . . . , n− s2}, then they are W s1,s2

p -conjugate. The same applies for the
dot action.

Now assume G = Spn. We let T be the group of diagonal matrices in Spn, i.e.
the matrices diag(d1, . . . , dn) with didi+m = 1 for all i ∈ {1, . . . ,m}. Now X
is naturally identified with Zm such that the i-th diagonal coordinate function
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corresponds to the i-th standard basis element εi of Zm. We let B+ be the
Borel subgroup corresponding to the set of positive roots εi ± εj , 1 ≤ i <
j ≤ m, 2εi, 1 ≤ i ≤ m. We can now identify the dominant weights with m-
tuples (λ1, . . . , λm) with λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0, or with partitions λ with
l(λ) ≤ m. We denote the subgroup of Wp generated by the sα,l, α = εi ± εj ,
1 ≤ i < j ≤ s or α = 2εi, 1 ≤ i ≤ s by Wp(Cs) and we denote the subgroup of
Wp generated by the sα,l, α = εi ± εj , 1 ≤ i < j ≤ s by Wp(Ds). The group
W acts on Zm by permutations and sign changes, and Wp

∼= W ⋉ pXev, where
Xev = {λ ∈ Zm | |λ| even} is the type Cm root lattice. Note that Wp(Cs) ∼=
W (Cs)⋉ pXev(Cs) and Wp(Ds) ∼= W (Ds)⋉ pXev(Cs), where Xev(Cs) consists
of the vectors in Xev which are 0 at the positions > s, W (Cs) is generated by
the sα = sα,0, α = εi ± εj , 1 ≤ i < j ≤ s or α = 2εi, 1 ≤ i ≤ s, and W (Ds)
is generated by the sα, α = εi ± εj , 1 ≤ i < j ≤ s. The group W (Ds) acts by
permutations and an even number of sign changes. We have

ρ = (m,m− 1, . . . , 1) .

It is easy to see that if λ, µ ∈ X are Wp-conjugate and equal at the positions
> s, then they are Wp(Cs)-conjugate. The same applies for the dot action.

In Section 3 of [6] and [8] the Jantzen sum formula is studied under certain
assumptions and this leads to a reduced Jantzen sum formula. From this a
partial order ⪯ on X+ is deduced which is the reflexive, transitive closure of
the order “χ(w · µ) occurs for some w ∈ W in the RHS of the reduced Jantzen
sum formula associated to λ”. We now give some precise definitions. First
assume G = GLn. Then we define

µ ⪯ λ if and only if there is a sequence of dominant weights λ = χ1, . . . , χt =
µ, t ≥ 1, such that for all r ∈ {1, . . . , t − 1}, χr+1 = wsα,l · χr for some

w ∈ W l(χ1
r),l(χ

2
r), α = εi − εj, 1 ≤ i ≤ l(χ1

r), n− l(χ2
r) < j ≤ n, and l ≥ 1 with

⟨χr + ρ, α∨⟩ − lp ≥ 1, and χ(sα,l · χr) ̸= 0.

We put

Λp = {λ ∈ X+ |λh
1 + l(λh) ≤ p for all h ∈ {1, 2}}

We will assume s = (s1, s2) where s1, s2 ∈ {1, . . . ,min(n, p)} with s1 + s2 ≤ n
and we put

Λ(s) = Λ(s1, s2) = {λ ∈ X+ | l(λh) ≤ sh ≤ p− λh
1 for all h ∈ {1, 2}}

and H = Wp.
Next assume G = Spn, n = 2m. Then we define

µ ⪯ λ if and only if there is a sequence of dominant weights λ = χ1, . . . , χt =
µ, t ≥ 1, such that for all r ∈ {1, . . . , t − 1}, χr+1 = wsα,l · χr for some
w ∈ Sym({1, . . . , l(χr)}), α = εi + εj, 1 ≤ i < j ≤ l(χr), and l ≥ 1 with
⟨χr+ρ, α∨⟩− lp ≥ 1, and all entries of sα,l(χr+ρ) distinct and strictly positive.

We put

Λp = {λ ∈ X+ |λ1 + l(λ) ≤ p}
Now we will assume s ∈ {1, . . . ,min(m, p)} and we put

Λ(s) = {λ ∈ X+ | l(λ) ≤ s ≤ p− λ1}
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and H = Wp(Ds).
We return to the general caseG = GLn orG = Spn. For a subset Λ ofX+ and

aG-moduleM we say thatM belongs to Λ if all composition factors have highest
weight in Λ and we denote by OΛ(M) the largest submodule ofM which belongs
to Λ. We denote the category of G-modules which belong to Λ by CΛ. The
category CΛ is the module category of the algebra OΛ(k[G])∗, see [5, Ch A] for
the relevant definitions and explanation. Let Λ ⊆ Λ(s) be ⪯-saturated. It was
shown in Prop 3.1(ii) in [8] and [6] that the algebra OΛ(k[G])∗ is quasihereditary
for the partial order ⪯ such that the irreducible, standard/costandard and
tilting modules are the irreducible, Weyl/induced and tilting modules for G
with the same label.

1.2. Arrow diagrams, and cap and cap-curl (co)diagrams.
Arrow and cap(-curl) diagrams. We now recall the definition of the arrow
and cap(-curl) diagram from [6, Sect 5] and [8, Sect 5] which is based on [3]
and [7]. Recall the definitions of ⪯, Λ(s) and H from Section 1.1. First we
assume G = GLn. An arrow diagram has p nodes on a (horizontal) line with p
labels: 0, . . . , p− 1. The i-th node from the left has label i− 1. Although 0 and
p− 1 are not connected we consider them as neighbours and we will identify a
diagram with any of its cyclic shifts. So when we are going to the left through
the nodes we get p−1 after 0 and when we are going to the right we get 0 after
p − 1. Next we choose s1, s2 ∈ {1, . . . ,min(n, p)} with s1 + s2 ≤ n and put a
wall below the line between ρs1 and ρs1 − 1 mod p, and a wall above the line
between ρs′2 = s2 and s2 +1 mod p. Then we can also put in a top and bottom
value for each label. A value and its corresponding label are always equal mod
p. Below the line we start with ρs1 immediately to the right of the wall, and
then increasing in steps of 1 going to the right: ρs1 , ρs1 + 1, . . . , ρs1 + p − 1.
Above the line we start with ρs′2 = s2 immediately to the left of the wall, and
then decreasing in steps of 1 going to the left: s2, s2 − 1, . . . , s2 − p + 1. For
example, when p = 5, n = 5 and s1 = s2 = 1, then ρs1 = s′1 = 5, ρs′2 = s2 = 1
and we have labels

•
0

•
1

•
2

•
3

•
4

and values

•
0

5

•
1

6

•
−3

7

•
−2

8

•
−1

9

.

For λ = [λ1, λ2] ∈ Λ(s) = Λ(s1, s2) we now form the ((s1, s2)-)arrow diagram
by putting s1 arrows below the line (∧) that point from the values (ρ+λ)1, . . . ,
(ρ + λ)s1 , i.e. ρ1 + λ1

1, . . . , ρs1 + λ1
s1 , or from the corresponding labels, and s2

arrows above the line (∨) that point from the values (ρ+λ)1′ , . . . , (ρ+λ)s′2 , i.e.

1 − λ2
1, . . . , s2 − λ2

s2 , or to the corresponding labels. So in the above example
the arrow diagram of λ = [4, 4] is

•
0

•
1

•
2

∨ •
3

•
4
∧ .

In such a diagram we frequently omit the nodes and/or the labels. When it
has already been made clear what the labels are and where the walls are, we



6 R. TANGE

can simply represent the arrow diagram by a string of single arrows (∧, ∨),
opposite pairs of arrows (×) and symbols o to indicate the absence of an arrow.
In the above example λ = [4, 4] is then represented by oo∨o∧ and λ = [2, 4] is
represented by oo×oo.

We can form the arrow diagram of λ as follows. First line up s1 arrows
immediately to the right of the wall below the line and then move them to the
right to the correct positions. The arrow furthest from the wall corresponds
to λ1

1, and the arrow closest to the wall corresponds to λ1
s1 . Then line up s2

arrows immediately to the left of the wall above the line and then move them to
the left to the correct positions. The arrow furthest from the wall corresponds
to λ2

1, and the arrow closest to the wall corresponds to λ2
s2 . The part of λ1

corresponding to an arrow below the line equals the number of nodes without a
∧ from that arrow to the wall going to the left and the part of λ2 corresponding
to an arrow below the line equals the number of nodes without a ∨ from that
arrow to the wall going to the right.

When we speak of “arrow pairs”, also in the Spn-case below, it is understood
that both arrows are single, i.e. neither of the two arrows is part of an ×.
The arrows need not be consecutive in the diagram. We now define the cap
diagram cλ of the arrow diagram associated to λ as follows. We assume that
the arrow diagram is cyclically shifted such that at least one of the walls is
between the first and last node. We select one such wall and when we speak of
“the wall” it will be the other wall. All caps are anti-clockwise, starting from
the rightmost node. We start on the left side of the wall. We form the caps
recursively. Find an arrow pair ∨∧ that are neighbours in the sense that the
only arrows in between are already connected with a cap or are part of an ×,
and connect them with a cap. Repeat this until there are no more such arrow
pairs. Now the unconnected arrows that are not part of an × form a sequence
∧ · · · ∧ ∨ · · · ∨. Note that none of these arrows occur inside a cap. The caps
on the right side of the wall are formed in the same way. For example, when
p = 17, n = 20, s1 = 8, s2 = 7 and λ = [965422, 824322], then cλ is

∧
13

∧ ∨
16

∧
0

∨ ∨ ∧ ∧∨ ∧ ∨ ∧ ∨ ∨ ∧
12

.

Note that the nodes with labels 5, 9, 15 have no arrow.
Now assume G = Spn. An arrow diagram has (p + 1)/2 nodes on a (hor-

izontal) line with p labels: 0 and ±i, i ∈ {1, . . . , (p − 1)/2}. The i-th node
from the left has top label −(i− 1) and a bottom label i− 1. So the first node
is the only node whose top and bottom label are the same. Next we choose
s ∈ {1, . . . ,min(m, p)} and put a wall between ρs and ρs − 1 mod p. So when
ρs = (p + 1)/2 mod p we can put the wall above or below the line, otherwise
there is only one possibility. Then we can also put in the values, one for each
label. A value and its corresponding label are always equal mod p. We start
with ρs immediately after the wall in the anti-clockwise direction, and then
increasing in steps of 1 going in the anti-clockwise direction around the line:
ρs, ρs + 1, . . . , ρs + p − 1. For example, when p = 5, m = 7 and s = 2, then
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ρs = 6 and we have labels

•
0

0

•
−1

1

•
−2

2

(usually we omit the top labels), and values

•
10

10

•
9

6

•
8

7

.

For a partition λ ∈ Λ(s) we now form the (s-)arrow diagram by putting in
s arrows (∨ or ∧) that point from the values (ρ + λ)1, . . . , (ρ + λ)s, or the
corresponding labels. In case of the label 0 we have two choices for the arrow.
So in the above example the arrow diagram of λ = (12) is

•
0

0

•
−1

1

•∨∧
−2

2

.

As in the GLn-case we can simply represent the arrow diagram by a string of
single arrows (∧, ∨), opposite pairs of arrows (×) and symbols o to indicate
the absence of an arrow. In the above example λ = (12) is then represented by
oo× and λ = (32) is represented by ∨o∨ or ∧o∨.

We can form the arrow diagram of λ by first lining all s arrows up against the
wall and then moving them in the anticlockwise direction to the right positions.
The arrow furthest from the wall (in the anti-clockwise direction) corresponds to
λ1, and the arrow closest to the wall corresponds to λs. The part corresponding
to an arrow equals the number of labels without an arrow from that arrow to
the wall in the clockwise direction.

We now define the cap-curl diagram cλ of the arrow diagram associated to
λ as follows. All caps and curls are anti-clockwise, starting from the arrow
closest to the wall. We start on the left side of the wall. We first form the caps
recursively. Find an arrow pair ∨∧ that are neighbours in the sense that the
only arrows in between are already connected with a cap or are part of an ×,
and connect them with a cap. Repeat this until there are no more such arrow
pairs. Now the unconnected arrows that are not part of an × form a sequence
∧ · · · ∧ ∨ · · · ∨. We connect consecutive (in the mentioned sequence) ∧∧ pairs
with a curl, starting from the left. At the end the unconnected arrows that are
not part of an × form a sequence ∧∨ · · · ∨ or just a sequence of ∨’s. Note that
none of these arrows occur inside a cap or curl. The caps on the right side of
the wall are formed in the same way. The curls now connect consecutive ∨∨
pairs and are formed starting from the right. So at the end the unconnected
arrows that are not part of an × form a sequence ∧ · · ·∧∨ or just a sequence of
∧’s. Again, none of these arrows occur inside a cap or curl. For example, when
p = 23, m = 17, s = 12 and λ = (11, 11, 11, 11, 11, 11, 10, 6, 4, 4, 1), then cλ is

∨ ∧ ∨∧ ∧ ∧ ∧ ∧ ∨ ∧ ∨ ∨ .

Note that the 10-th node which has labels ±9 and values 9 and 14, has no
arrow.
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(∧,∨)-sequences and length functions. We now return to the general
case G = GLn or G = Spn. First we introduce some combinatorial tools to
express the order ⪯ in terms of arrow diagrams. This is based on the treatment
in [1, Sect 5] and [3, Sect 8]. Let ξ, η be sequences with values in {∧,∨}. We say
that ξ and η are conjugate if they have the same length and the same number
of ∧’s mod 2. We say they are strongly conjugate if they have the same length
and the same number of ∧’s.

We say ξ ⪯ η if ξ can be obtained from η by repeatedly replacing an arrow
pair ∨∧ or an arrow pair ∧∧ by the opposite arrow pair.

Clearly, ξ ⪯ η implies that ξ and η are conjugate. If ξ and η are strongly
conjugate and ξ ⪯ η, then ξ can be obtained from η by repeatedly replacing an
arrow pair ∨∧ by the opposite arrow pair. For η, ξ ∈ {∧,∨}r and i ∈ {1, . . . , r}
we define

li(η) = |{j ∈ {i, . . . , r} | ηj = ∧}| and li(η, ξ) = li(η)− li(ξ) .

Note that li(η, ξ) equals

|{j ∈ {i, . . . , r} | ηj ̸= ξj and ηj = ∧}| − |{j ∈ {i, . . . , r} | ηj ̸= ξj and ξj = ∧}| .

Then we have

ξ ⪯ η ⇐⇒ ξ and η are conjugate and li(η, ξ) ≥ 0 for all i ∈ {2, . . . , r}.

Put l(η) =
∑r

i=2 li(η) and l(η, ξ) = l(η) − l(ξ) =
∑r

i=2 li(η, ξ). Call replacing
an arrow pair ∧∧ in the first two positions or a consecutive arrow pair ∨∧ by
the opposite arrow pair an elementary operation. If ξ ⪯ η, then l(η, ξ) is the
minimal number of elementary operations needed to obtain ξ from η.

For λ ∈ Λ(s) we define the associated pair of (∧,∨)-sequences (η1, η2) as
follows. If G = GLn, then η1 is the sequence of single arrows to the left of the
wall in the (cyclically shifted) arrow diagram of λ, and η2 is the sequence of
single arrows to the right of the wall. This pair is well-defined up to order. If
G = Spn, then η1 is the sequence of single arrows to the left of the wall in the
arrow diagram of λ, and η2 is the sequence of single arrows to the right of the
wall, rotated 180 degrees. For example, when G = GLn and the arrow diagram
of λ is

∧ ∧ ∨ ∧ ∨ ∨ ∧ ∧∨ ∧ ∨ ∧ ∨ ∨ ∧ ,

then (η1, η2) = (∧ ∧ ∨ ∧ ∨ ∨ ∧ ∧ ∨,∧ ∨ ∨∧), and when G = Spn and the arrow
diagram of λ is

∨ ∧ ∨∧ ∧ ∧ ∧ ∧ ∨ ∧ ∨ ∨ ,

then (η1, η2) = (∨ ∧ ∧ ∧ ∧,∧ ∧ ∨ ∧ ∨). For λ, µ ∈ Λ(s) with associated pairs of
(∧,∨)-sequences (η1, η2) and (ξ1, ξ2) we put

n(λ) = l(η1) + l(η2) and n(λ, µ) = l(η1, ξ1) + l(η2, ξ2) = n(λ)− n(µ) .

Note that n(λ, µ) is independent of s.
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If below λ, µ ∈ Λ(s), then we let (η1, η2) and (ξ1, ξ2) be the pairs of (∧,∨)-
sequences associated to λ and µ. If furthermore G = Spn and the arrow diagram
of λ has an arrow at 0, then we assume that the parity of the number of ∧’s
in the arrow diagram of µ is the same as that for λ. This only requires a
possible change of an arrow at 0 to its opposite in the arrow diagram of λ. For
λ, µ ∈ Λ(s) we have by [8, Rem 5.1.1] and [6, Rem 5.1.1] that

λ and µ are H-conjugate under the dot action if and only if the arrow diagram
of µ has its single arrows and its ×’s at the same nodes as the arrow diagram

of λ and

{
ξi and ηi are strongly conjugate for all i ∈ {1, 2} if G = GLn,

ξi and ηi are conjugate for all i ∈ {1, 2} if G = Spn.

Furthermore, for λ ∈ Λ(s) and µ ∈ X+ we have

µ ⪯ λ ⇔ µ ∈ Λ(s) ∩H · λ and ξ1 ⪯ η1 and ξ2 ⪯ η2.

More cap(-curl) diagrams, and codiagrams. We now recall from [6,
Sect 6,7] and [8, Sect 6,7] the definitions of cap(-curl) diagrams associated to
two weights, and codiagrams. Let λ, µ ∈ Λ(s) with µ ⪯ λ. Then the arrow
diagram of µ has its single arrows and its ×’s at the same nodes as the arrow
diagram of λ. If G = Spn and the arrow diagram of λ has an arrow at 0, then
we assume that the parity of the number of ∧’s in the arrow diagram of µ is
the same as that for λ. This only requires a possible change of an arrow at 0
to its opposite in the arrow diagram of λ (or µ). If there is no arrow at 0, then
these parities will automatically be the same, since µ is Wp(Dl(λ))-conjugate to
λ under the dot action. The cap-curl diagram cλµ associated to λ and µ by
replacing each arrow in cλ by the arrow from the arrow diagram of µ at the
same node. Put differently, we put the caps and curls from cλ on top of the
arrow diagram of µ. We say that cλµ is oriented if all caps and curls in cλµ are
oriented (clockwise or anti-clockwise). It is not hard to show that when cλµ is
oriented, the arrow diagrams of λ and µ are the same at the nodes which are
not endpoints of a cap or a curl in cλ.

For example, when G = GLn, p = 5, n = 7, s1 = 2, s2 = 3 and λ = [32, 212].
Then ρs1 = s′1 = 6, and cλ (cyclically shifted) is

∨
1

∨
2

∧
3

∨
4

∧
0

.

The µ ∈ X+ with µ ≺ λ are [22, 13], [31, 21], [21, 12], [3, 2], [2, 1], with (cyclically
shifted) arrow diagrams ∨ ∨ ∧ ∧ ∨,∨ ∧ ∨ ∨ ∧,∨ ∧ ∨ ∧ ∨,∧ ∨ ∨ ∨ ∧,∧ ∨ ∨ ∧ ∨.
Only for the first three cλµ is oriented.

When G = Spn, p = 11, m = 7, s = 5 and λ = (6332). Then ρs = 3 and cλ is

∨ ∧ ∧ ∨ ∧ .

The µ ∈ X+ with µ ≺ λ are (6321), (65232), (65221), (52432), (52421), (4332),
(4321), with arrow diagrams ∨ ∧ ∧ o ∧ ∨,∧ ∨ ∧ o ∨ ∧,∧ ∨ ∧ o ∧ ∨,∧ ∧ ∨ o ∨ ∧,
∧ ∧ ∨ o ∧ ∨,∨ ∨ ∨ o ∨ ∧,∨ ∨ ∨ o ∧ ∨. Only for the first three cλµ is oriented.
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Finally, we define cap or cap-curl codiagram coµ of the arrow diagram asso-
ciated to µ ∈ Λ(s) by reversing the roles of ∧ and ∨ in the definition of cλ. So
all caps and curls in coµ are clockwise. In the case G = Spn the caps now have
their curve below the line when they are to the left of the wall and above the
line when they are to the right of the wall. If µ, λ ∈ Λ(s) with µ ⪯ λ, then we
define cap or cap-curl codiagram coµλ associated to µ and λ by replacing each

arrow in coµ by the arrow from the arrow diagram of λ at the same node.1 We
say that coµλ is oriented if all caps and curls in coµλ are oriented (clockwise or
anti-clockwise). We refer to [8, Sect 7] and [6, Sect 7] for more details and just
give two examples from these papers.

When G = Spn, p = 11, m = 7, s = 5 and µ = (4321). Then ρs = 3 and coµ
is

∨ ∨ ∨ ∧ ∨ .

Consider two dominant weights λ with µ ⪯ λ: (6332) and (52432) with arrow
diagrams ∨ ∧ ∧o ∨ ∧ and ∧ ∧ ∨o ∨ ∧. Only for the last coµλ is oriented.

When G = GLn, p = 5, n = 7, s1 = 2, s2 = 3 and µ = [2, 1]. Then
ρs1 = s′1 = 6, and coµ (cyclically shifted) is

∧
1

∨
2

∨
3

∧
4

∨
0

.

Consider two dominant weights λ with µ ⪯ λ: [31, 21] and [32, 212] with (cycli-
cally shifted) arrow diagrams ∨ ∧ ∨ ∨ ∧ and ∨ ∨ ∧ ∨ ∧. Only for the first coµλ
is oriented.

1.3. The translation functors. We recall from [6, Sect 4] and [8, Sect 4] the
definition and basic properties of certain translation functors and in the case
of G = Spn we will also introduce certain refined translation functors. For
simplicity we do not quite state things in the same generality as in [6] and [8]:
we work below with the set Λ(s) rather than the set Λs from [6] or the set Λp as
in [8]. For λ ∈ X+ the projection functor prλ : {G-modules} → {G-modules}
is defined by prλM = OWp·λ∩X+(M). Then M =

⊕
λ prλM where the sum

is over a set of representatives of the Wp-linkage classes in X+, see [5, II.7.3].
Recall the definitions of ⪯, Λ(s) and H from Section 1.1.

First assume G = GLn. For λ = [λ1, λ2] ∈ X+, let Supp1(λ) be the set of all
µ = [µ1, µ2] ∈ X+ which can be obtained by adding a box to λ1 or removing a
box from λ2, but not both, and let Supp2(λ) be the set of all µ = [µ1, µ2] ∈ X+

which can be obtained by removing a box from λ1 or adding a box to λ2, but
not both. Now let λ, λ′ ∈ X+ with λ′ ∈ Supph(λ), h ∈ {1, 2}. Then we have

for the translation functor, see [5, II.7.6], T λ′
λ : {G-modules} → {G-modules}

that T λ′
λ M = prλ′((prλM) ⊗ V ) when h = 1 and T λ′

λ M = prλ′((prλM) ⊗ V ∗)

when h = 2. Furthermore, T λ′
λ is exact and left and right adjoint to T λ

λ′ . An
application of Brauer’s formula shows that, for λ′ ∈ Supph(λ), h ∈ {1, 2},

1Again we assume that if G = Spn and the arrow diagram of λ has an arrow at 0, then the
parity of the number of ∧’s in the arrow diagram of λ is the same as that for µ.
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and µ ∈ X+ ∩ Wp · λ, T λ′
λ ∇(µ) has a good filtration with sections ∇(ν), ν ∈

Supph(µ)∩Wp ·λ′, and the analogue for Weyl modules and Weyl filtrations also
holds. We refer to [8, Sect 4] for further explanation. To unify notation with

the case G = Spn, which we will discuss next, we put T̃ λ′
λ = T λ′

λ .
Now assume G = Spn. For λ ∈ X+, let Supp(λ) be the set of all partitions of

length ≤ m which can be obtained by adding a box to λ or removing a box from
λ. Then we have for the translation functor T λ′

λ : {G-modules} → {G-modules}
that T λ′

λ M = prλ′((prλM) ⊗ V ). Furthermore, T λ′
λ is exact and left and right

adjoint to T λ
λ′ . Note that, for µ ∈ X+ ∩Wp · λ, T λ′

λ ∇(µ) has a good filtration
with sections ∇(ν), ν ∈ Supp(µ) ∩Wp · λ′, and the analogue for Weyl modules
and Weyl filtrations also holds.

We now define certain refined translation functors. If Λ ⊆ Λ(s) is a ⪯-
saturated set, then, by [6, Prop 3.1(ii)], the type Ds linkage principle holds
in CΛ. So if λ, µ ∈ Λ belong to the same CΛ-block, then they are conjugate
under the dot action of Wp(Ds). For λ ∈ Λ(s) we define the projection functor
p̃rλ : CΛ(s) → CΛ(s) by p̃rλM = OWp(Ds)·λ∩X+(M). Then M =

⊕
λ p̃rλM

where the sum is over a set of representatives of the type Ds linkage classes
in Λ(s). Note that p̃rλM is a direct summand of prλM . Now let λ, λ′ ∈
Λ(s) with λ′ ∈ Supp(λ) and let C, C′ be Serre subcategories of CΛ(s) such that
prλ′((p̃rλM) ⊗ V ) ∈ CΛ(s) for all M ∈ C and prλ((p̃rλ′M) ⊗ V ) ∈ CΛ(s) for

all M ∈ C′. Then we define the translation functors T̃ λ′
λ : C → CΛ(s) and

T̃ λ
λ′ : C′ → CΛ(s) by T̃ λ′

λ M = p̃rλ′((p̃rλM)⊗ V ) and T̃ λ
λ′M = p̃rλ((p̃rλ′M)⊗ V ).

Note that if µ ∈ X+ ∩ Wp(Ds) · λ and ∇(µ) ∈ C, then T̃ λ′
λ ∇(µ) has a good

filtration with sections ∇(ν), ν ∈ Supp(µ)∩Wp(Ds) ·λ′. The analogue for Weyl

modules and Weyl filtrations also holds. If T̃ λ′
λ and T̃ λ

λ′ have image in C and
C′, then they restrict to functors C → C′ and C′ → C which are exact and each
others left and right adjoint. To unify notation with the case G = GLn we put
Supph = Supp for h ∈ {1, 2}.

We now return to the general case G = GLn or G = Spn. Proposition 1 below
is a combination of Propositions 4.1 in [6] and [8] and Proposition 2 below is
a combination of Propositions 4.2 in [6] and [8]. In the case G = Spn we can

ignore the subscripts h and h, and in the G = GLn-case we can read T̃ as T .

Proposition 1 (Translation equivalence). Let h, h ∈ {1, 2} be distinct, let
λ, λ′ ∈ Λ(s) with λ′ ∈ Supph(λ) and let Λ ⊆ H · λ ∩ Λ(s),Λ′ ⊆ H · λ′ ∩ Λ(s) be
⪯-saturated sets. Assume

(1) Supph(ν) ∩Wp · λ′ ⊆ Λ(s) for all ν ∈ Λ, and Supph(ν
′) ∩Wp · λ ⊆ Λ(s) for

all ν ′ ∈ Λ′.
(2) |Supph(ν) ∩H · λ′| = 1 = |Supph(ν

′) ∩H · λ| for all ν ∈ Λ and ν ′ ∈ Λ′.
(3) The map ν 7→ ν ′ : Λ → Λ(s) given by Supph(ν) ∩H · λ′ = {ν ′} has image

Λ′, and together with its inverse Λ′ → Λ it preserves the order ⪯.

Then T̃ λ′
λ restricts to an equivalence of categories CΛ → CΛ′ with inverse T̃ λ

λ′ :

CΛ′ → CΛ. Furthermore, with ν and ν ′ as in (3), we have T̃ λ′
λ ∇(ν) = ∇(ν ′),

T̃ λ′
λ ∆(ν) = ∆(ν ′), T̃ λ′

λ L(ν) = L(ν ′), T̃ λ′
λ T (ν) = T (ν ′) and T̃ λ′

λ IΛ(ν) = IΛ′(ν ′).
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Proposition 2 (Translation projection). Let h, h ∈ {1, 2} be distinct, let λ, λ′ ∈
Λ(s) with λ′ ∈ Supph(λ) and let Λ ⊆ H ·λ∩Λ(s),Λ′ ⊆ H ·λ′∩Λ(s) be ⪯-saturated

sets. Put Λ̃ = {ν ∈ Λ |Supph(ν) ∩H · λ′ ̸= ∅}. Assume

(1) Supph(ν) ∩Wp · λ′ ⊆ Λ(s) for all ν ∈ Λ, and Supph(ν
′) ∩Wp · λ ⊆ Λ(s) for

all ν ′ ∈ Λ′.
(2) |Supph(ν) ∩ H · λ′| = 1 for all ν ∈ Λ̃, and |Supph(ν

′) ∩ H · λ| = 2 for all
ν ′ ∈ Λ′.

(3) The map ν 7→ ν ′ : Λ̃ → Λ(s) given by Supph(ν) ∩ H · λ′ = {ν ′} is a 2-
to-1 map which has image Λ′ and preserves the order ⪯. For ν ′ ∈ Λ′ we
can write Supph(ν

′) ∩ H · λ = {ν+, ν−} with ν− ≺ ν+ and then we have
HomG(∇(ν+),∇(ν−)) ̸= 0 and η′ ⪯ ν ′ ⇒ η+ ⪯ ν+ and η− ⪯ ν−.

Then T̃ λ′
λ restricts to a functor CΛ → CΛ′ and T̃ λ

λ′ restricts to a functor CΛ′ → CΛ.
Now let ν ∈ Λ. If ν /∈ Λ̃, then T̃ λ′

λ ∇(ν) = T̃ λ′
λ ∆(ν) = T̃ λ′

λ L(ν) = 0. For

ν ′ ∈ Λ′ with ν± as in (3), we have T̃ λ′
λ ∇(ν±) = ∇(ν ′), T̃ λ′

λ ∆(ν±) = ∆(ν ′),

T̃ λ′
λ L(ν−) = L(ν ′), T̃ λ′

λ L(ν+) = 0, T̃ λ
λ′T (ν ′) = T (ν+) and T̃ λ

λ′IΛ′(ν ′) = IΛ(ν
−).

Remarks 1. 1. It is easy to see that in the situation of Proposition 2 we have
a nonsplit extension

0 → ∇(ν−) → T̃ λ
λ′∇(ν ′) → ∇(ν+) → 0 :

if it were split, then dimHomG(∇(ν+), T̃ λ
λ′∇(ν ′)) > 1, but using the adjoint

functor property it is clear that this dimension is 1. If we now consider the
long exact cohomology sequence associated to the above short exact sequence
and the functor HomG(∇(ν+),−), and we also use the adjoint functor prop-
erty (which holds for all ExtiG), then we obtain dimHomG(∇(ν+),∇(ν−)) =
dimExt1G(∇(ν+),∇(ν−)) = 1 and ExtiG(∇(ν+),∇(ν−)) = 0 for i > 1. See also
[5, II.2.14 and 4.13].
2. From the proofs of Theorems 6.1 in [6] and [8] we deduce that the assump-
tions of Proposition 1 are satisfied in the following situations where we will
always take Λ = Λ(s) ∩ H · λ and Λ′ = Λ(s) ∩ H · λ′ once we have chosen
λ, λ′ ∈ Λ(s). We will derive the “moves” from coλ rather than from cλ as in

[6, Thm 6.1] and [8, Thm 6.1]. If coλ is of the form · · · ∧ · · · • ∨
a
· · · when

G = GLn or G = Spn and the cap is to the right of the wall, then we choose

co′λ = · · · ∧ · · · ∨ •
a
· · · . If G = Spn and the cap is to the left of the wall,

we let the curves go below the horizontal line. The bijection ν 7→ ν ′ : Λ → Λ′

is then given by
··· o ∧ ··· 7→ ··· ∧ o ···
··· o ∨ ··· 7→ ··· ∨ o ···

a a
. In case the (a − 1)-node in the arrow

diagram of λ carries an × we get an × at the a-node of λ′ and the bijection

ν 7→ ν ′ : Λ → Λ′ is then given by
··· × ∧ ··· 7→ ··· ∧ × ···
··· × ∨ ··· 7→ ··· ∨ × ···

a a
. One can also move the

right end node of the cap one step to the right past an empty node or past an
× (that is just the inverse bijection) or move the left end node one step past an
empty node or past an ×. In case G = Spn one can also move one of the end
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nodes of a curl one step past an empty node or past an ×. The diagrammatic
descriptions of the bijections are the same. Furthermore, one can turn a curl
with left end node at 0 into a cap by replacing the arrow at the 0-node by its
opposite. In terms of the weights this bijection is just the identity. Finally, one
can turn a curl with right end node the last node into a cap by replacing the
arrow at the last node by its opposite. The bijection ν 7→ ν ′ : Λ → Λ′ is given

by ··· ∨ 7→ ··· ∧
··· ∧ 7→ ··· ∨ . In most applications we start with a cap or curl with no caps

or curls inside it and then repeatedly apply moves as above until we have a cap
with consecutive end nodes. Then we can apply the next remark.
3. From the aforementioned proofs we can also deduce that the assumptions
of Proposition 2 are satisfied in the following situations where we will always
take Λ = Λ(s) ∩H · λ and Λ′ = Λ(s) ∩H · λ′ once we have chosen λ, λ′ ∈ Λ(s).
We will derive the “moves” from coλ rather than cλ as in [6, Thm 6.1] and [8,

Thm 6.1], so we will have λ = λ−, rather than λ = λ+. The set Λ̃ will always
consist of the ν ∈ Λ for which the cap or curl of coλ under consideration is

oriented in coλν . If coλ is of the form · · · ∧ ∨
a
· · · when G = GLn or G = Spn

and the cap is to the right of the wall, or coλ = · · · ∧ ∨
a
· · · when G = Spn

and the cap is to the left of the wall, then we choose λ′ = · · · • ∨∧
a
· · · . and the

projection ν 7→ ν ′ : Λ̃ → Λ′ is given by ··· ∧ ∨ ···
··· ∨ ∧ ··· 7→ ··· o × ··· . In case G = GLn

or G = Spn and a > 1 we can also choose λ′ = · · · ∨∧ •
a
· · · and then the

projection ν 7→ ν ′ : Λ̃ → Λ′ is given by ··· ∧ ∨ ···
··· ∨ ∧ ··· 7→ ··· × o ··· . Finally, if coλ

has a curl at the first two nodes, then we can choose λ′ = • ∨∧
a
· · · . and the

projection ν 7→ ν ′ : Λ̃ → Λ′ is given by ∧ ∧ ···
∨ ∨ ··· 7→ o × ··· . However, this is just

the combination of the trivial move mentioned near the end of the previous
remark and the above “cap-contraction”.

2. The polynomials

Recall the definitions of ⪯, Λ(s) and H from Section 1.1. Throughout this
section we assume that Λ,Λ′ ⊆ Λ(s) are the intersection of Λ(s) with anH-orbit
under the dot action.

Definition 1. For λ, µ ∈ Λ we define the polynomials dλµ ∈ Z[q] by

dλµ =

{
qnumber of clockwise caps and curls in cλµ , if µ ⪯ λ and cλµ is oriented,

0 otherwise.

Clearly the matrix (dλµ)λ,µ is lower uni-triangular for the ordering ⪯: dλλ = 1
and dλµ ̸= 0 implies µ ⪯ λ. Next we define the polynomials pλµ by requiring
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that the matrix (pλµ)λ,µ is the inverse of (dλµ(−q))λ,µ. This inverse is then also
lower uni-triangular for the ordering ⪯.

Definition 2. For λ, µ ∈ Λ we define the polynomials eλµ ∈ Z[q] by

eλµ =

{
qnumber of anti-clockwise caps and curls in coµλ , if µ ⪯ λ and coµλ is oriented,

0 otherwise.

Clearly the matrix (eλµ)λ,µ is lower uni-triangular for the ordering ⪯. Next we
define the polynomials rλµ by requiring that the matrix (rλµ)λ,µ is the inverse
of (eλµ(−q))λ,µ. This inverse is then also lower uni-triangular for the ordering
⪯.

Remark 2. Let λ, µ ∈ Λp. In [6, Thm 6.1] and [8, Thm 6.1] it was shown that
(T (λ) : ∇(µ)) = dλµ(1) if µ ⪯ λ, and 0 otherwise, and in [6, Thm 7.1] and [8,
Thm 7.1] it was shown that [∇(λ) : L(µ)] = eλµ(1) if µ ⪯ λ, and 0 otherwise.

The proof of the following lemma is easy, we leave it to the reader.

Lemma 1.

(i) Assume we are in the situation of Remark 1.2. Then dλµ = dλ′µ′ and
eλµ = eλ′µ′ for λ, µ ∈ Λ.

(ii) Assume we are in the situation of Remark 1.3. For λ = λ+ ∈ Λ we have

dλ+µ+ = dλ′µ′ , for µ+ ∈ Λ,

dλ+µ− = qdλ′µ′ , for µ− ∈ Λ,

dλ+µ = 0 for µ ∈ Λ not of the form µ±.

For µ = µ− ∈ Λ we have

eλ−µ− = eλ′µ′ , for λ− ∈ Λ,

eλ+µ− = qeλ′µ′ , for λ+ ∈ Λ

eλµ− = 0 for λ ∈ Λ not of the form λ±.

As in [3, Sect. 7] one can show that

dλ+µ+ = q−1dλ−µ+ + dλ−µ− and

dλ+µ− = qdλ−µ− + dλ−µ+ .

Proposition 3.

(i) Assume we are in the situation of Remark 1.2. Then pλµ = pλ′µ′ and
rλµ = rλ′µ′ for λ, µ ∈ Λ.

(ii) Assume we are in the situation of Remark 1.3. For λ = λ+ ∈ Λ we have

pλ+µ+ = pλ′µ′ + qpλ−µ+ , (1)

for all µ+ ∈ Λ and

pλ+µ = qpλ−µ (2)

for all µ ∈ Λ not of the form µ+.
For µ = µ− ∈ Λ we have

rλ−µ− = rλ′µ′ + qrλ−µ+ , (3)
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for all λ− ∈ Λ and

rλµ− = qrλµ+ (4)

for all λ ∈ Λ not of the form λ−.

Proof. (i). By Lemma 1(i) the matrices (dλµ)λ,µ and (dλ′µ′)λ,µ are the same, so
their inverses (pλµ)λ,µ and (pλ′µ′)λ,µ are also the same. The second identity is
proved in the same way.
(ii). We will prove (1) and (2) by ⪰-induction on µ with µ = λ as (trivial)
basis case. Put p̃λµ = pλµ(−q). By the definition of the pλµ and the induction
hypothesis we have

p̃λµ = δλµ −
∑

µ≺ν⪯λ

p̃λνdνµ

= δλµ −
∑

µ≺ν⪯λ

ν=ν+

(p̃λ′ν′ − qp̃λ−ν)dνµ + q
∑

µ≺ν⪯λ

ν ̸=ν+

p̃λ−νdνµ

=

(
δλµ −

∑
µ≺ν⪯λ

ν=ν+

p̃λ′ν′dνµ

)
+

(
q

∑
µ≺ν⪯λ−

p̃λ−νdνµ

)
.

The second bracketed expression equals qδλ−µ − qp̃λ−µ by the definition of the
pλµ. Denote the first bracketed expression by E. Then we have

E =


δλ′µ′ −

∑
µ′≺ν′⪯λ′ p̃λ′ν′dν′µ′ = p̃λ′µ′ if µ = µ+,

−q
∑

µ′⪯ν′⪯λ′ p̃λ′ν′dν′µ′ = −qδλ′µ′ = −qδλ−µ if µ = µ−,

0 if µ ̸= µ±,

where we used Lemma 1(ii) and that, when µ = µ−, we can have ν = µ+ in the
sum in E. It follows that

p̃λµ =

{
p̃λ′µ′ − qp̃λ−µ if µ = µ+,

−qp̃λ−µ if µ ̸= µ+,

as required.
Equations (3) and (4) are proved by ⪯-induction on λ with λ = µ as (trivial)

basis case. Put r̃λµ = rλµ(−q). By the definition of the rλµ and the induction
hypothesis we have

r̃λµ = δλµ −
∑

µ⪯ν≺λ

eλν r̃νµ

= δλµ −
∑

µ⪯ν≺λ

ν=ν−

eλν(r̃ν′µ′ − qr̃νµ+) + q
∑

µ⪯ν≺λ

ν ̸=ν−

eλν r̃νµ+

=

(
δλµ −

∑
µ⪯ν≺λ

ν=ν−

eλν r̃ν′µ′

)
+

(
q

∑
µ+⪯ν≺λ

eλν r̃νµ+

)
.

We leave the rest of the proof to the reader. □
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Remarks 3. 1. Obviously λ ̸= µ ⇒ dλµ, eλµ ∈ qZ[q], so we also have λ ̸= µ ⇒
pλµ, rλµ ∈ qZ[q].
2. Using elementary properties of n(λ, µ) and the li(η, ξ), see e.g. [3, p175,176],
one can easily show by induction that pλµ ̸= 0 ⇔ µ ⪯ λ and that pλµ ̸= 0 ⇒
deg(pλµ) = n(λ, µ) and the degrees of the terms of pλµ have the same parity.
Similarly, we obtain rλµ ̸= 0 ⇔ µ ⪯ λ and rλµ ̸= 0 ⇒ deg(rλµ) = n(λ, µ) and
the degrees of the terms of rλµ have the same parity.
3. If G = Spn and the arrow diagram of any λ ∈ Λ has an arrow at 0, then
assume that the parity of the number of ∧’s in the arrow diagrams of the weights
in Λ is fixed. Let λ, µ ∈ Λ and let (η1, η2) and (ξ1, ξ2) be the associated pairs
of (∧,∨)-sequences. Then it is easy to see that the polynomials dλµ, pλµ, eλµ
and rλµ only depend on (η1, η2) and (ξ1, ξ2). In fact one can define the cap
and cap-curl diagrams for (∧,∨)-sequences: Just do this as on the left side of
the wall in the Spn-case and as on any side of the wall in the GLn-case. This
is essentially the same as in [3, Sect 4.5]: In the diagram from [3, Sect 8] in
the Spn-Brauer-case we have to put in the wall using their ρδ rather than our
ρ and omit the infinite tail ∧ · · · ∧ ∨ ∨ · · · starting at the wall. The associated
(∧,∨)-sequence is then formed by the remaining single arrows to the left of the
wall. In the GLn-walled Brauer-case we have to put in the walls using their
ρδ rather than our ρ ((ρδ)i = δ − i + 1 for i ≥ 1) and omit the infinite tail
of ∨’s to the right of the wall above the line and the infinite tail of ∧’s to the
left of the wall below the line. The associated (∧,∨)-sequence is then formed
by the remaining single arrows between the walls. We omit the infinite rays in
the cap(-curl) diagram from [3, Sect 8]. Then we can also define the d and p
polynomials for (∧,∨)-sequences2 and we then have

dλµ = dη1ξ1dη2ξ2 .

So the matrix (dλµ)λ,µ is the Kronecker product of the matrices (dη1ξ1)η1,ξ1 and

(dη2ξ2)η2,ξ2 , where the ηi and the ξi vary over a strong conjugacy class when
G = GLn and over a conjugacy class when G = Spn. But then the same must
hold for their inverses, so we obtain:

pλµ = pη1ξ1pη2ξ2 .

The analogues of Remark 1.3, Lemma 1(ii) and Proposition 3(ii) for d and
p-polynomials associated to (∧,∨)-sequences also hold. Next we could define
codiagrams and e and r-polynomials for (∧,∨)-sequences, but instead we use
the order reversing involution † which replaces every arrow by its opposite, and
then we have

eλµ = d(ξ1)†(η1)†d(ξ2)†(η2)† and rλµ = p(ξ1)†(η1)†p(ξ2)†(η2)† .

One can also define † on Λ(s) and then obtain the identities

eλµ = dµ†λ† and rλµ = pµ†λ† ,

but in the case of G = GLn it is only clear that this works when s1 = s2, since
otherwise the values of s1 and s2 swap and the walls would move. See also [8,
Cor to Thm 7.1] and [6, Cor to Thm 7.1].

2Of course, the meaning of cξη, dξη and pξη depends on the case: G = GLn or G = Spn.
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Finally, we point out that we have an explicit combinatorial formula for
the pηξ as in [3, Sect 8] (in the GLn-case see also [1, Sect 5]). In both cases
we work with a single external/unbounded chamber (and omit all the infinite
rays). Of course in [3, Sect 8] (and [1, Sect 5]) this expression is actually the
definition of their p-polynomials, but one can prove as in [3, Sect 8] that this
alternative definition leads to the same recursive relations as (1) and (2) for
(∧,∨)-sequences.

3. Tilting and injective resolutions

We retain the notation and assumptions from the previous section. For
λ, µ ∈ Λ define the integers piλµ, r

i
λµ ∈ Z by

pλµ(q) =
∑
i≥0

piλµq
i and

rλµ(q) =
∑
i≥0

riλµq
i .

The theorem below is the analogue of [1, Thm 5.3] and [3, Thm 9.1] in our
setting.

Theorem 1. The induced module ∇(λ), λ ∈ Λ, has a finite left tilting resolu-
tion:

· · · → T 1(λ) → T 0(λ) → ∇(λ) → 0

where

T i(λ) =
⊕
µ∈Λ

piλµT (µ) .

Proof. The proof is very similar to that of [3, Thm 9.1]. One merely has to
replace ∆(a)(µ), P(a)(µ), P

i
(a)(µ) and resλ(a+1) in that proof by ∇(µ), T (µ), T i(µ)

and T̃ λ
λ′ , and for the extension to a chain map use the fact that HomG(T

i(µ),−)
maps short exact sequences of modules with a good filtration to exact sequences.
We leave the details to the reader and give the proof of the next theorem in
more detail. □

Theorem 2. The induced module ∇(µ), µ ∈ Λ, has a finite injective resolution
in CΛ:

0 → ∇(µ) → I0(µ) → I1(µ) → · · ·
where

Ii(µ) =
⊕
λ∈Λ

riλµIΛ(λ) .

Proof. The proof follows [3, Thm 9.1] and [6, Thms 6.1,7.1] (and [8, Thms 6.1,7.1]).
We assume that the assertion holds for weights ν ∈ Λ with ν ≻ µ and weights
whose cap-curl codiagram has fewer caps and curls in case G = Spn and whose
cap codiagram has fewer caps in case G = GLn. If coµ has no caps or curls, then
µ is maximal in Λ and ∇(µ) = IΛ(µ). Now assume coµ has a cap or curl. After
finitely many translation equivalences, see Remark 1.2, we may assume that
there is a cap in coµ connecting consecutive vertices. Fix such a cap. Then we
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are in the situation of Remark 1.3 and we can write µ = µ−. By the inductive
assumption we have injective resolutions

0 → ∇(µ′) → I0(µ′) → I1(µ′) → · · · (5)

in CΛ′ and

0 → ∇(µ+) → I0(µ+) → I1(µ+) → · · · (6)

in CΛ. Recall from Remark 1.1 in Section 1.3 that we have an exact sequence

0 → ∇(µ−) → T̃µ
µ′∇(µ′)

f→ ∇(µ+) → 0 (7)

Applying T̃µ
µ′ to (5) and extending f to a chain map using (6) we obtain a

commutative diagram with exact rows

0 // T̃µ
µ′∇(µ′) //

f
��

T̃µ
µ′I0(µ′) //

��

T̃µ
µ′I1(µ′) //

��

· · ·
.

0 // ∇(µ+) // I0(µ+) // I1(µ+) // · · ·

We multiply all arrows in one of the rows by −1 to make the squares anti-
commutative and then we extend the diagram to a double complex by adding
zeros in all remaining rows. Taking the total complex of this double complex
gives a bounded exact complex

0 → T̃µ
µ′∇(µ′) → ∇(µ+)⊕ T̃µ

µ′I
0(µ′) → · · · → Ii(µ+)⊕ T̃µ

µ′I
i+1(µ′) → · · · ,

see e.g. [9, Ex 1.2.5]. Using (7) we get a surjective chain map from the above
complex to

0 → ∇(µ+) → ∇(µ+) → 0 → · · · → 0 → · · · .
Taking the kernel we obtain an exact complex (see e.g. [9, Ex 1.3.1])

0 → ∇(µ) → T̃µ
µ′I

0(µ′) → · · · → Ii(µ+)⊕ T̃µ
µ′I

i+1(µ′) → · · · . (8)

By Proposition 2 we have T̃µ
µ′I0(µ′) = T̃µ

µ′IΛ′(µ′) = IΛ(µ) = I0(µ). For i ≥ 0

we have by Propositions 2 and 3(ii) that

Ii(µ+)⊕ T̃µ
µ′I

i+1(µ′) =
⊕
λ∈Λ

riλµ+IΛ(λ)⊕
⊕
λ′∈Λ′

ri+1
λ′µ′ T̃

µ
µ′IΛ′(λ′)

=
⊕
λ∈Λ

riλµ+IΛ(λ)⊕
⊕
λ′∈Λ′

ri+1
λ′µ′IΛ(λ

−)

=
⊕
λ−∈Λ

(riλ−µ+ + ri+1
λ′µ′)IΛ(λ

−)⊕
⊕

λ∈Λ,λ ̸=λ−

riλµ+IΛ(λ)

=
⊕
λ−∈Λ

ri+1
λ−µ−IΛ(λ

−)⊕
⊕

λ∈Λ,λ ̸=λ−

ri+1
λµ−IΛ(λ)

=
⊕
λ∈Λ

ri+1
λµ−IΛ(λ) = Ii+1(µ−) = Ii+1(µ) .

If we substitute this in (8), then we obtain the required injective resolution of
∇(µ) in CΛ. □
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As in [1, Cor 5.5] and [3, Cor 9.3] we obtain

Corollary 1. We have riλµ = dimExtiG(L(λ),∇(µ)) for all i ≥ 0. Furthermore,

ExtiG(L(λ),∇(µ)) = 0 unless i ≡ n(λ, µ) (mod 2).

Proof. By Remark 3.2 all nonzero terms in rλµ have degree of the same par-
ity as n(λ, µ). So after applying HomG(L(λ),−) to the injective resolution in
Theorem 3 the nonzero modules in the resulting complex all have degree of the
same parity as n(λ, µ). Therefore, all differentials in the complex are 0, i.e. the
complex equals its own cohomology. □

Corollary 2. Put tiλµ = dimExtiG(L(λ), L(µ)) for all i ≥ 0, and

tλµ(q) =
∑

i≥0 t
i
λµq

i ∈ Z[q]. Then tλµ =
∑

ν⪯λ,µ rλνrµν . In particular,

ExtiG(L(λ), L(µ)) = 0 unless i ≡ n(λ, µ) (mod 2).

Proof. By the previous corollary the category CΛ with length function λ 7→ n(λ)
(see Sect 1.2) has a Kazhdan-Lusztig theory in the sense of [2, 3.3]. So the result
follows from [2, Cor 3.6(a)]. See also 2.12(2), 2.13(2), 4.13(3) and C.10 in [5,
Part II]. □

Corollary 3. We have chL(λ) =
∑

µ⪯λ rλµ(−1)χ(µ).

Proof. This follows from[5, II.6.21(6)] and the first corollary. □

Remark 4. We compare Λp, which is the union of the various Λ(s), with
the Jantzen region of Lusztig’s conjecture [5, II.8.22]. For the Jantzen region
to be nonempty we clearly need p ≥ h − 1, where h is the Coxeter number.
Furthermore, the Jantzen region contains all restricted dominant weights when
p ≥ 2h− 3. Our set Λp is always nonempty, but for G = Spn it contains only a
small portion of the restricted dominant weights and for G = GLn only a small
portion of the restricted dominant SLn-weights lift to a weight in Λp.

4. Limiting results for a fixed residue of n mod p

Throughout this section δ is any integer. We want to derive a certain stability
result for arrow diagrams when p ≫ 0. For GLn we cyclically shift the diagram
such that the 0-node is in the middle and then the idea is that we don’t want
arrows to move from one end of the diagram to the other end. Then the
“relevant (∧,∨)-sequence” will be between the two walls. For Spn and δ even
the position of the wall relative to the first node is fixed and we don’t want
arrows to move around the right end node, so the “relevant (∧,∨)-sequence”
is to the left of the wall. For Spn and δ odd the position of the wall relative
to the last node is fixed and we don’t want arrows to move around the left
end node, so the “relevant (∧,∨)-sequence” is the second (∧,∨)-sequence which
comes from the arrows to the right of the wall.

The GLn-case. Let r1, r2, s1, s2 be integers ≥ 0, and let Λ consist of pairs of
partitions (λ1, λ2) with λi

1 ≤ ri and l(λi) ≤ si for all i ∈ {1, 2}. Choose a prime
p > 2 such that

δ − s1 + 1, 1− r2 ≥ −(p− 1)/2 and

s2, δ + r1 ≤ (p− 1)/2 .
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Choose t ≥ 0 such that n := δ + tp ≥ s1 + s2. We now identify Λ with
the set {[λ1, λ2] | (λ1, λ2) ∈ Λ}. Then ρ is defined as in Section 1.1. Now we
change the labels in the arrow diagram by replacing each label by the integer
in {−(p− 1)/2, · · · , (p− 1)/2} that is equal to it mod p, and we cyclically shift
the diagram such that the first node has label −(p − 1)/2. Then the labels of
the arrows corresponding to [λ1, λ2] stay the same when we increase p, keeping
t (but not n!) fixed. They are δ + λ1

1, · · · , δ − s1 + 1 + λ1
s1 (∧, below the line),

and 1 − λ2
1, · · · , s2 − λ2

s2 (∨, above the line). So this gives a limiting diagram
with infinitely many nodes which is essentially the same as the diagram in [3]
for (λ1, λ2) and a walled Brauer algebra Bu,v(δ) with (λ1, λ2) in its label set.3

See Remark 3.3 how to adapt the diagram in [3] to our conventions. Because
of the characterisation of ⪯ in terms of arrow diagrams in Section 1.2 it is now
clear that the order ⪯ on Λ is independent of p.

If we assume that n ≥ u + v and that Λ consists of the pairs of partitions
(λ1, λ2) with |λ1| ≤ u, |λ2| ≤ v and u − |λ1| = v − |λ2|, then we can use the
rational Schur functor

frat : mod(S(n;u, v)) → mod(Bu,v(δ)) ,

where S(n;u, v) is the rational Schur algebra and Bu,v(δ) is the walled Brauer
algebra in characteristic p, and deduce using arrow diagrams that for big p the
decomposition numbers of Br,s are independent of p and equal to the decom-
position numbers of Br,s(δ) in characteristic 0. See [8, Cor to Thm 6.1 and
Prop 8.3] and [3, Thm 4.10].

The Spn-case. Let r, s be integers ≥ 0, and let Λ consist of partitions λ1 with
λ1 ≤ r and l(λ) ≤ s. Choose a prime p > 2 such that

−δ/2− s+ 1 > −p/2

−δ/2 + λ1 < p/2

Assume first δ is even. Then

−δ/2− s+ 1 ≥ −(p− 1)/2 and

−δ/2 + λ1 ≤ (p− 1)/2 .

Choose t > 0 such that m := −δ/2+ tp ≥ s. Then ρ is defined as in Section 1.1.
Then we can increase p and all arrows stay in the same position relative to the
first node: Their labels are −δ/2+λ1,−δ/2− 1+λ2, · · · ,−δ/2− s+1+λs. So
this gives a limiting diagram with infinitely many nodes which is essentially the
same as the diagram in [3] for λ and a Brauer algebra Bu(δ) in characteristic 0
with λ in its label set.4 See Remark 3.3 how to adapt the diagram in [3] to our
conventions.

3Our label (λ1, λ2) corresponds to the label (λ2, λ1) in the notation of [3], and Bu,v(δ) corre-
sponds to Bv,u(δ). In characteristic 0 we still stick with our notation.

4The corresponding standard or irreducible module of Bu(δ) has the transpose λT of λ as
label.
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Now assume δ is odd. Put δ = δ − p. Then

−δ/2− s+ 1 > 0 and

−δ/2 + r < p .

Choose t ≥ 0 such that m := −δ/2+ tp ≥ s. Then ρ is defined as in Section 1.1.
Now change the labels by adding p to the labels above the line, giving the first
node top label p and bottom label 0. Then the labels of the arrows correspond-
ing to λ are −δ/2 + λ1,−δ/2 − 1 + λ2, · · · ,−δ/2 − s + 1 + λs. Then we can
increase p and all arrows stay in the same position relative to the last node.
We now subtract p/2 from all labels. Then the labels of the arrows will stay
the same when we increase p: −δ/2+λ1,−δ/2− 1+λ2, · · · ,−δ/2− s+1+λs.
If we now rotate the diagram 180 degrees we obtain the limiting diagram with
infinitely many nodes which is essentially the same as the diagram in [3] for
λ and a Brauer algebra Bu(δ) in characteristic 0 with λ in its label set. See
Remark 3.3 how to adapt the diagram in [3] to our conventions.

Now assume again that δ is arbitrary and G = Spn. Because of the charac-
terisation of ⪯ in terms of arrow diagrams in Section 1.2 it is now clear that
the order ⪯ on Λ is independent of p. If we assume that m ≥ u and that Λ
consists of the partitions λ with |λ| ≤ u, and u− |λ| even, then we can use the
symplectic Schur functor

f0 : mod(S0(n, u)) → mod(Bu(δ)) ,

where S0(n, u) is the symplectic Schur algebra and Bu(δ) is the Brauer algebra
in characteristic p, and deduce using arrow diagrams that for big p the decom-
position numbers of Bu are independent of p and equal to the decomposition
numbers of Bu(δ) in characteristic 0. See [4, Prop 2.1], [6, Cor to Thm 6.1] and
[3, Thm 5.8].
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