

Available online at www.sciencedirect.com

JOURNAL OF Algebra

Journal of Algebra 301 (2006) 425-445

www.elsevier.com/locate/jalgebra

The centre of quantum \mathfrak{sl}_n at a root of unity

Rudolf Tange

School of Mathematics, University of Southampton, Highfield, SO17 1BJ, UK Received 5 May 2005 Available online 13 February 2006 Communicated by Corrado de Concini

Summary

It is proved that the centre Z of the simply connected quantised universal enveloping algebra over \mathbb{C} , $U_{\varepsilon,P}(\mathfrak{sl}_n)$, ε a primitive *l*th root of unity, *l* an odd integer > 1, has a rational field of fractions. Furthermore it is proved that if *l* is a power of an odd prime, *Z* is a unique factorisation domain. © 2005 Elsevier Inc. All rights reserved.

Introduction

In [8] de Concini, Kac and Procesi introduced the simply connected quantised universal enveloping algebra $U = U_{\varepsilon,P}(\mathfrak{g})$ over \mathbb{C} at a primitive *l*th root of unity ε associated to a simple finite-dimensional complex Lie algebra \mathfrak{g} . The importance of the study of the centre *Z* of *U* and its spectrum Maxspec(*Z*) is pointed out in [7,8].

In this article we consider the following two conjectures concerning the centre Z of U in the case $g = \mathfrak{sl}_n$:

- (1) Z has a rational field of fractions.
- (2) Z is a unique factorisation domain (UFD).

The same conjectures can be made for the universal enveloping algebra $U(\mathfrak{g})$ of the Lie algebra \mathfrak{g} of a reductive group over an algebraically closed field of positive characteristic.

E-mail address: rtange@maths.soton.ac.uk.

^{0021-8693/}\$ – see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2005.11.036

In [16] these conjectures were proved for $\mathfrak{g} = \mathfrak{gl}_n$ and for $\mathfrak{g} = \mathfrak{sl}_n$ under the condition that *n* is non-zero in the field.

The second conjecture was made by Braun and Hajarnavis in [1] for the universal enveloping algebra $U(\mathfrak{g})$ and suggested for $U = U_{\varepsilon,P}(\mathfrak{g})$. There it was also proved that Z is locally a UFD. In Section 3 below, this conjecture is proved for \mathfrak{sl}_n under the condition that l is a power of a prime ($\neq 2$). The auxiliary results and Step 1 of the proof of Theorem 4, however, hold without extra assumptions on l.

The first conjecture was posed as a question by J. Alev for the universal enveloping algebra $U(\mathfrak{g})$. It can be considered as a first step towards a proof of a version of the Gelfand-Kirillov conjecture for U. Indeed the Gelfand-Kirillov conjecture for \mathfrak{gl}_n and \mathfrak{sl}_n in positive characteristic¹ was proved recently by J.-M. Bois in his PhD thesis [4] using results in [16] on the centres of their universal enveloping algebras (for \mathfrak{sl}_n it was required that $n \neq 0$ in the field). It should be noted that the Gelfand-Kirillov conjecture for $U(\mathfrak{g})$ in characteristic 0 (and in positive characteristic) is still open for \mathfrak{g} not of type A.

As in [16], a certain semi-invariant d for a maximal parabolic subgroup of GL_n will play an important rôle. Later we learned that (a version of) this semi-invariant already appeared before in the literature, see [10]. For quantum versions, see [12,13].

1. Preliminaries

In this section we recall some basic results, mostly from [8], that are needed to prove the main results (Theorems 3 and 4) of this article. Short proofs are added in case the results are not explicitly stated in [8].

1.1. Elementary definitions

Let \mathfrak{g} be a simple finite-dimensional Lie algebra over \mathbb{C} with Cartan subalgebra \mathfrak{h} , let Φ be its root system relative to \mathfrak{h} , let $(\alpha_1, \ldots, \alpha_r)$ be a basis of Φ and let $(\cdot|\cdot)$ be the symmetric bilinear form on \mathfrak{h}^* which is invariant for the Weyl group W and satisfies $(\alpha|\alpha) = 2$ for all short roots α . Put $d_i = (\alpha_i |\alpha_i|/2)$. The root lattice and the weight lattice of Φ are denoted by respectively Q and P. Note that $(\cdot|\cdot)$ is integral on $Q \times P$.

Mostly we will be in the situation where $\mathfrak{g} = \mathfrak{sl}_n$. In this case r = n - 1 and all the d_i are equal to 1. We then take \mathfrak{h} the subalgebra that consists of the diagonal matrices in \mathfrak{sl}_n and we take $\alpha_i = A \mapsto A_{ii} - A_{i+1i+1} : \mathfrak{h} \to \mathbb{C}$.

Let *l* be an odd integer > 1 and coprime to all the d_i , let ε be a primitive *l*th root of unity and let Λ be a lattice between Q and P. Let $U = U_{\varepsilon,\Lambda}(\mathfrak{g})$ be the quantised universal enveloping algebra of \mathfrak{g} at the root of unity ε defined in [8] and denote the centre of U by Z. Since U has no zero divisors (see [7, 1.6–1.8]), Z is an integral domain. Let U^+, U^-, U^0 be the subalgebras of U generated by respectively the E_i , the F_i and the K_λ with $\lambda \in \Lambda$. Then the multiplication $U^- \otimes U^0 \otimes U^+ \to U$ is an isomorphism of vector spaces. We

¹ The *Gelfand–Kirillov conjecture* for a Lie algebra \mathfrak{g} over K states that the fraction field of $U(\mathfrak{g})$ is isomorphic to a Weyl skew field $D_n(L)$ over a purely transcendental extension L of K.

identify U^0 with the group algebra $\mathbb{C}\Lambda$ of Λ . Note that W acts on U^0 , since it acts on Λ . Let T be the complex torus $\operatorname{Hom}(\Lambda, \mathbb{C}^{\times})$. Then T can be identified with $\operatorname{Maxspec}(U^0) = \operatorname{Hom}_{\mathbb{C}-\operatorname{Alg}}(U^0, \mathbb{C})$ and for the action of T on $U^0 = \mathbb{C}[T]$ by translation we have $t \cdot K_{\lambda} = t(\lambda)K_{\lambda}$.

The braid group \mathcal{B} acts on U by automorphisms. See [8, 0.4]. The subalgebra Z_0 of U is defined as the smallest \mathcal{B} -stable subalgebra containing the elements K_{λ}^l , $\lambda \in \Lambda$, and E_i^l , F_i^l , i = 1, ..., r. We have $Z_0 \subseteq Z$. Put $z_{\lambda} = K_{\lambda}^l$ and let Z_0^0 be the subalgebra of Z_0 spanned by the z_{λ} . Then the identification of U^0 with $\mathbb{C}\Lambda$ gives an identification of Z_0^0 with $\mathbb{C}l\Lambda$. If we replace K_{λ} by z_{λ} in foregoing remarks, then we obtain an identification of T with Maxspec (Z_0^0) . Put $Z_0^{\pm} = Z_0 \cap U^{\pm}$. Then the multiplication $Z_0^- \otimes Z_0^0 \otimes Z_0^+ \to Z_0$ is an isomorphism (of algebras). See e.g. [7, 3.3].

1.2. The Harish-Chandra centre Z_1 and the quantum restriction theorem

Let Q^{\vee} be the dual root lattice, that is, the \mathbb{Z} -span of the dual root system Φ^{\vee} . We have $Q^{\vee} \cong P^* \hookrightarrow \Lambda^*$. Denote the image of Q^{\vee} under the homomorphism $f \mapsto (\lambda \mapsto (-1)^{\tilde{f}(\lambda)}) : \Lambda^* \to T$ by Q_2^{\vee} . Then the elements $\neq 1$ of Q_2^{\vee} are of order 2 and $U^{0}Q_2^{\vee} = \mathbb{C}(\Lambda \cap 2P)$. Since Q_2^{\vee} is *W*-stable, we can form the semi-direct product $\tilde{W} = W \ltimes Q_2^{\vee}$ and then $U^{0\tilde{W}} = (\mathbb{C}(\Lambda \cap 2P))^W$.

Let $h': U = U^- \otimes U^0 \otimes U^+ \to U^0$ be the linear map taking $x \otimes u \otimes y$ to $\epsilon_U(x)u\epsilon_U(y)$, where ϵ_U is the counit of U. Then h' is a projection of U onto U^0 . Furthermore $h'(Z_0) = Z_0^0 = \mathbb{C}l\Lambda$ and $h'|_{Z_0}: Z_0 \to Z_0^0$ has a similar description as h' and is a homomorphism of algebras. Define the shift automorphism γ of $U^{0Q_2^{\vee}}$ by setting $\gamma(K_{\lambda}) = \varepsilon^{(\rho|\lambda)}K_{\lambda}$ for $\lambda \in \Lambda \cap 2P$. Here ρ is the half sum of the positive roots. Note that $\gamma = \text{id}$ on $Z_0^{0Q_2^{\vee}} = \mathbb{C}l(\Lambda \cap 2P)$. In [8, p. 174] and [7, §2], there was constructed an injective homomorphism $\bar{h}: U^{0\tilde{W}} \to Z$, whose image is denoted by Z_1 , such that $h'(Z_1) \subseteq U^{0Q_2^{\vee}}$ and the inverse

$$h: Z_1 \xrightarrow{\sim} U^{0W}$$

of \bar{h} is equal to $\gamma^{-1} \circ h'$. Note that h = h' on $Z_0 \cap Z_1$ and that $h'|_{Z_1}$ is a homomorphism of algebras. Since Ker(h') is stable under left and right multiplication by elements of U^0 and under multiplication by elements of Z, we can conclude that the restriction of h' to the subalgebra generated by Z_0 and Z_1 is a homomorphism of algebras.

From now on we assume that A = P. Let G be the simply connected almost simple complex algebraic group with Lie algebra g and let T be a maximal torus of G. We identify Φ and W with the root system and the Weyl group of G relative to T. Note that the character group X(T) of T is equal to P. In case $g = \mathfrak{sl}_n$ we take T the subgroup of diagonal matrices in SL_n .

1.3. Generators for $\mathbb{C}[G]^G$ and Z_1

We denote the fundamental weights corresponding to the basis $(\alpha_1, \ldots, \alpha_r)$ by $\varpi_1, \ldots, \varpi_r$. As is well known, they form a basis of *P*. Let $\mathbb{C}[G]$ be the algebra of regular functions on *G*. Then the restriction homomorphism $\mathbb{C}[G] \to \mathbb{C}[T] = \mathbb{C}P$ induces

an isomorphism $\mathbb{C}[G]^G \xrightarrow{\sim} \mathbb{C}[T]^W = (\mathbb{C}P)^W$, see [17, §6]. For $\lambda \in P$ denote the basis element of $\mathbb{C}P$ corresponding to λ by $e(\lambda)$, denote the *W*-orbit of λ by $W \cdot \lambda$ and put $\operatorname{sym}(\lambda) = \sum_{\mu \in W \cdot \lambda} e(\mu)$. Then the $\operatorname{sym}(\varpi_i)$, $i = 1, \ldots, r$, are algebraically independent generators of $(\mathbb{C}P)^W$. See [3, No. VI.3.4, Théorème 1].

For a field *K*, we denote the vector space of all $n \times n$ matrices over *K* by $Mat_n = Mat_n(K)$. Now assume that $K = \mathbb{C}$. In this section we denote the restriction to SL_n of the standard coordinate functionals on Mat_n by ξ_{ij} , $1 \leq i, j \leq n$. Furthermore, for $i \in \{1, ..., n-1\}$, $s_i \in \mathbb{C}[SL_n]$ is defined by $s_i(A) = tr(\bigwedge^i A)$, where $\bigwedge^i A$ denotes the *i*th exterior power of *A* and tr denotes the trace. Then $\varpi_i = (\xi_{11} \cdots \xi_{ii})|_T$ and therefore

$$\operatorname{sym}(\varpi_i) = s_i|_T, \tag{(*)}$$

the *i*th elementary symmetric function in the $\xi_{ij}|_T$. See [16, 2.4].

In the general case we use the restriction theorem for $\mathbb{C}[G]$ and define $s_i \in \mathbb{C}[G]^G$ by (*). So then s_1, \ldots, s_r are algebraically independent generators of $\mathbb{C}[G]^G$.

Identifying U^0 and $\mathbb{C}P$, we have $U^{0\tilde{W}} = (\mathbb{C}2P)^{\tilde{W}}$. Put $u_i = \bar{h}(\operatorname{sym}(2\varpi_i))$. Then $h(u_i) = \operatorname{sym}(2\varpi_i)$ and u_1, \ldots, u_r are algebraically independent generators of Z_1 .

1.4. The cover π and the intersection $Z_0 \cap Z_1$

Let Φ^+ be the set of positive roots corresponding to the basis $(\alpha_1, \ldots, \alpha_r)$ of Φ and let U_+ respectively U_- be the maximal unipotent subgroup of G corresponding to Φ^+ respectively $-\Phi^+$. If $\mathfrak{g} = \mathfrak{sl}_n$, then U_+ and U_- consist of the upper respectively lower triangular matrices in SL_n with ones on the diagonal. Put $\mathcal{O} = U_-TU_+$. Then \mathcal{O} is a nonempty open and therefore dense subset of G. Furthermore, the group multiplication defines an isomorphism $U_- \times T \times U_+ \xrightarrow{\sim} \mathcal{O}$ of varieties. Put $\Omega = \text{Maxspec}(Z_0)$.

In [7, (3.4)–(3.6)] there was constructed a group \tilde{G} of automorphisms of $\hat{U} = \hat{Z}_0 \otimes_{Z_0} U$, where \hat{Z}_0 denotes the algebra of holomorphic functions on the complex analytic variety Ω . The group \tilde{G} leaves \hat{Z}_0 and $\hat{Z} = \hat{Z}_0 \otimes_{Z_0} Z$ stable. In particular it acts by automorphisms on the complex analytic variety Ω . In [8] this action is called the "quantum coadjoint action."

In [8, §4] there was constructed an unramified cover $\pi : \Omega \to \mathcal{O}$ of degree 2^r . I give a short description of the construction of π . Put $\Omega^{\pm} = \text{Maxspec}(Z_0^{\pm})$. Then we have $\Omega = \Omega^- \times T \times \Omega^+$. Now $Z: \Omega \to T$ is defined as the projection on $T, X: \Omega \to U_+$ and $Y: \Omega \to U_-$ as the projection on Ω^{\pm} followed by some isomorphism $\Omega^{\pm} \xrightarrow{\sim} U_{\pm}$ and π is defined as YZ^2X (multiplication in G).² This means: $\pi(x) = Y(x)Z(x)^2X(x)$.

The following theorem says something about how \tilde{G} and π are related to the "Harish-Chandra centre" Z_1 and the conjugation action of G on $\mathbb{C}[G]$. For more precise statements see [8, 5.4, 5.5 and §6].

Theorem 1. [8, Proposition 6.3, Theorem 6.7] Consider π as a morphism to G. Then the comorphism $\pi^{co} : \mathbb{C}[G] \to Z_0$ is injective and the following holds:

² In [8] Z^2 is denoted by Z. The notation here comes from [9]. The centre of U is denoted by the same letter, but this will cause no confusion.

- (i) $Z^{\tilde{G}} = Z_1.^3$
- (ii) π^{co} induces an isomorphism $\mathbb{C}[G]^G \xrightarrow{\sim} Z_0^{\tilde{G}} = Z_0 \cap Z_1$.
- (iii) The monomorphism $(\mathbb{C}P)^W \xrightarrow{\sim} (\mathbb{C}P)^W$ obtained by combining the isomorphism in (ii) with the restriction homomorphism $\mathbb{C}[G] \to \mathbb{C}[T] = \mathbb{C}P$ and $h: Z_1 \to U^0 = \mathbb{C}P$, is given by $x \mapsto 2lx: P \to P$. In particular $h(Z_0 \cap Z_1) = (\mathbb{C}2lP)^W$.

I will give the proof of (iii). If we identify Z_0^0 with $\mathbb{C}[T]$, then the homomorphism $h'|_{Z_0}: Z_0 \to Z_0^0$ is the comorphism of a natural embedding $T \hookrightarrow \Omega$. Now we have a commutative diagram

Expressed in terms of the comorphisms this reads: $(x \mapsto 2x) \circ \operatorname{res}_{G,T} = \operatorname{res}_{\Omega,T} \circ \pi^{\operatorname{co}}$, where $\operatorname{res}_{G,T}$ and $\operatorname{res}_{\Omega,T}$ are the restrictions to T and the comorphism of the morphism between the tori is denoted by its restrictions to the character groups. Now we identify U^0 with $\mathbb{C}[T]$. Composing both sides on the left with $x \mapsto lx$ and using $(x \mapsto lx) \circ \operatorname{res}_{\Omega,T} =$ $h'|_{Z_0} : Z_0 \to U^0 = \mathbb{C}P$ we obtain $(x \mapsto 2lx) \circ \operatorname{res}_{G,T} = h' \circ \pi^{\operatorname{co}}$. If we restrict both sides of this equality to $\mathbb{C}[G]^G$, then we can replace h' by h and we obtain the assertion.

1.5. Z_0 and Z_1 generate Z

Theorem 2. [8, Proposition 6.4, Theorem 6.4] Let u_1, \ldots, u_r be the elements of Z_1 defined in Subsection 1.3. Then the following holds:

- (i) The multiplication $Z_1 \otimes_{Z_0 \cap Z_1} Z_0 \to Z$ is an isomorphism of algebras.
- (ii) Z is a free Z₀-module of rank l^r with the restricted monomials $u_1^{k_1} \cdots u_r^{k_r}$, $0 \le k_i < l$, as a basis.

I give a proof of (ii). In [8, Proposition 6.4] it is proved that $(\mathbb{C}P)^W$ is a free $(\mathbb{C}lP)^W$ module of rank l^r with the restricted monomials (exponents < l) in the sym (ϖ_i) as a basis. The same holds then of course for $(\mathbb{C}2P)^W$, $(\mathbb{C}2lP)^W$ and the sym $(2\varpi_i)$. But then the same holds for $Z_1, Z_0 \cap Z_1$ and the u_i by (iii) of Theorem 1. So the result follows from (i).

Recall that $\Omega = \Omega^- \times T \times \Omega^+$ and that $\Omega^{\pm} \cong U_{\pm}$. So Z_0 is a polynomial algebra in dim(\mathfrak{g}) variables with *r* variables inverted. In particular its Krull dimension (which coincides with the transcendence degree of its field of fractions) is dim(\mathfrak{g}). The same holds then for *Z*, since it is a finitely generated *Z*₀-module.

³ \tilde{G} is a group of automorphisms of the algebra \hat{U} and does not leave Z stable. However, $S^{\tilde{G}}$ can be defined in the obvious way for every subset S of \hat{U} .

Let Z'_0 be a subalgebra of Z_0 containing $Z_1 \cap Z_0$. Then the multiplication $Z_1 \otimes_{Z_0 \cap Z_1} Z'_0 \to Z'_0 Z_1$ is an isomorphism of algebras by the above theorem. This gives us a way to determine generators and relations for $Z'_0 Z_1$: Let s_1, \ldots, s_r be the generators of $\mathbb{C}[G]^G$ defined in Subsection 1.3. Then $\pi^{co}(s_1), \ldots, \pi^{co}(s_r)$ are generators of $Z_0 \cap Z_1 = Z'_0 \cap Z_1$ by Theorem 1(ii). Now assume that we have generators and relations for Z'_0 . We use for Z_1 the generators u_1, \ldots, u_r defined in Subsection 1.3. For each $i \in \{1, \ldots, r\}$ we can express $\pi^{co}(s_i)$ as a polynomial g_i in the generators of Z'_0 and as a polynomial f_i in the u_j . Then the generators and relations for Z'_0 together with the u_i and the relations $f_i = g_i$ form a presentation of $Z'_0 Z_1$.⁴

The f_i can be determined as follows. Write $\operatorname{sym}(l\varpi_i)$ as a polynomial f_i in the $\operatorname{sym}(\varpi_j)$. Then $\operatorname{sym}(2l\varpi_i)$ is the same polynomial in the $\operatorname{sym}(2\varpi_j)$ and $\pi^{\operatorname{co}}(s_i) = f_i(u_1, \ldots, u_r)$ by Theorem 1(iii).

Note that $\pi^{co}(\mathbb{C}[\mathcal{O}]) = Z_0^- \mathbb{C}(2lP)Z_0^+$ and that $Z_0 = \pi^{co}(\mathbb{C}[\mathcal{O}])[z_{\overline{\omega}_1}, \ldots, z_{\overline{\omega}_r}].$

Now assume that $G = SL_n$. For $f \in \mathbb{C}[SL_n]$ denote $f \circ \pi$ by \tilde{f} and put $\tilde{Z}_0 = \pi^{co}(\mathbb{C}[SL_n])$. Then \tilde{Z}_0 is generated by the $\tilde{\xi}_{ij}$; it is a copy of $\mathbb{C}[SL_n]$ in Z_0 . Now \mathcal{O} consists of the matrices $A \in SL_n$ that have an LU-decomposition (without row permutations), that is, whose principal minors $\Delta_1(A), \ldots, \Delta_{n-1}(A)$ are non-zero. So $\mathbb{C}[\mathcal{O}] = \mathbb{C}[SL_n][\Delta_1^{-1}, \ldots, \Delta_{n-1}^{-1}], \pi^{co}(\mathbb{C}[\mathcal{O}]) = \tilde{Z}_0[\tilde{\Delta}_1^{-1}, \ldots, \tilde{\Delta}_{n-1}^{-1}]$ and

$$Z_0 = \tilde{Z}_0[z_{\varpi_1}, \dots, z_{\varpi_{n-1}}] \left[\tilde{\Delta}_1^{-1}, \dots, \tilde{\Delta}_{n-1}^{-1} \right].$$

Let $\operatorname{pr}_{\mathcal{O},T}$ be the projection of \mathcal{O} on T. An easy computation shows that $\Delta_i|_{\mathcal{O}} = (\xi_{11}\cdots\xi_{ii}) \circ \operatorname{pr}_{\mathcal{O},T} = \varpi_i \circ \operatorname{pr}_{\mathcal{O},T}$ for $i = 1, \ldots, n - 1$.⁵ So $\tilde{\Delta_i} = \varpi_i \circ \operatorname{pr}_{\mathcal{O},T} \circ \pi = \varpi_i \circ (t \mapsto t^2) \circ \operatorname{pr}_{\mathcal{O},T} = 2\varpi_i \circ \operatorname{pr}_{\mathcal{O},T} = z_{\varpi_i}^2$. In Subsection 3.3 we will determine generators and relations for Z'_0Z_1 , where $Z'_0 = \tilde{Z}_0[z_{\varpi_1}, \ldots, z_{\varpi_{n-1}}]$ using the method mentioned above.

2. Rationality

We use the notation of Section 1 with the following modifications. The functions ξ_{ij} , $1 \leq i, j \leq n$, now denote the standard coordinate functionals on Mat_n and for $i \in \{1, ..., n\}$, $s_i \in K[\text{Mat}_n]$ is defined by $s_i(A) = \text{tr}(\bigwedge^i A)$ for $A \in \text{Mat}_n$. Then $\det(x \operatorname{id} - A) = x^n + \sum_{i=1}^n (-1)^i s_i(A) x^{n-i}$. This notation is in accordance with [16].

For $f \in \mathbb{C}[Mat_n]$ we denote its restriction to SL_n by f' and we denote $\pi^{co}(f')$ by \tilde{f} . So now s'_1, \ldots, s'_{n-1} and ξ'_{ij} are the functions s_1, \ldots, s_{n-1} and ξ_{ij} of Subsection 1.3 and the $\tilde{\xi}_{ij}$ are the same.

To prove the theorem below we need to look at the expressions of the functions s_i in terms of the ξ_{ii} . We use that those equations are linear in $\xi_{1n}, \xi_{2n}, \dots, \xi_{nn}$. The treatment

⁴ This method was also used by Krylyuk in [14] to determine generators and relations for the centre of the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} . Our homomorphism $\pi^{co}: \mathbb{C}[G] \to Z_0$ plays the rôle of Krylyuk's *G*-equivariant isomorphism $\eta: S(\mathfrak{g})^{(1)} \to Z_p$, where we use the notation of [16].

⁵ For two $n \times n$ matrices A and B we have $\bigwedge^k (AB) = \bigwedge^k (A) \bigwedge^k (B)$. From this it follows that if either A is lower triangular or B is upper triangular, then $\Delta_k (AB) = \Delta_k (A) \Delta_k (B)$.

is completely analogous to that in [16, 4.1] (we use the same symbols R, M, d and x_a) to which we refer for more explanation. Let R be the \mathbb{Z} -subalgebra of $\mathbb{C}[Mat_n]$ generated by all ξ_{ij} with $j \neq n$.

Let ∂_{ij} denote differentiation with respect to the variable ξ_{ij} and set

$$M = \begin{bmatrix} \partial_{1n}(s_1) & \partial_{2n}(s_1) & \dots & \partial_{nn}(s_1) \\ \partial_{1n}(s_2) & \partial_{2n}(s_2) & \dots & \partial_{nn}(s_2) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{1n}(s_n) & \partial_{2n}(s_n) & \dots & \partial_{nn}(s_n) \end{bmatrix}, \qquad \mathbf{c} = \begin{bmatrix} \xi_{1n} \\ \xi_{2n} \\ \vdots \\ \xi_{nn} \end{bmatrix}, \qquad \mathbf{s} = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix}.$$

Then the matrix M has entries in R and the following vector equation holds:

$$M \cdot \mathbf{c} = \mathbf{s} + \mathbf{r}, \quad \text{where } \mathbf{r} \in \mathbb{R}^n.$$
 (1)

We denote the determinant of M by d. For $\mathbf{a} = (a_1, \ldots, a_n) \in K^n$ we set

$$x_{\mathbf{a}} = \begin{bmatrix} 0 & \cdots & 0 & 0 & a_n \\ 1 & \cdots & 0 & 0 & a_{n-1} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 & a_2 \\ 0 & \cdots & 0 & 1 & a_1 \end{bmatrix}.$$

Then the minimal polynomial of $x_{\mathbf{a}}$ equals $x^n - \sum_{i=1}^n a_i x^{n-i}$, $\det(x_{\mathbf{a}}) = (-1)^{n-1} a_n$ and $d(x_{\mathbf{a}}) = 1$ (compare Lemma 3 in [16]).

Theorem 3. *Z* has a rational field of fractions.

Proof. Denote the field of fractions of Z by Q(Z). From Subsection 1.5 it is clear that Q(Z) has transcendence degree dim $(\mathfrak{sl}_n) = n^2 - 1$ over \mathbb{C} and that it is generated as a field by the $n^2 + 2(n-1)$ variables $\tilde{\xi}_{ij}, u_1, \ldots, u_{n-1}$ and $z_{\varpi_1}, \ldots, z_{\varpi_{n-1}}$. To prove the assertion we will show that Q(Z) is generated by the $n^2 - 1$ elements $\tilde{\xi}_{ij}, i \neq j, j \neq n, u_1, \ldots, u_{n-1}$ and $z_{\varpi_1}, \ldots, z_{\varpi_{n-1}}$. We will first eliminate the *n* generators $\tilde{\xi}_{1n}, \ldots, \tilde{\xi}_{nn}$ and then the n-1 generators $\tilde{\xi}_{11}, \ldots, \tilde{\xi}_{n-1n-1}$.

Applying the homomorphism $f \mapsto \tilde{f} = \pi^{co} \circ (f \mapsto f') : \mathbb{C}[\operatorname{Mat}_n] \to Z_0$ to both sides of (1) we obtain the following equations in the $\tilde{\xi}_{ij}$ and $\tilde{s}_1, \ldots, \tilde{s}_{n-1}$

$$\tilde{M} \cdot \tilde{\mathbf{c}} = \tilde{\mathbf{s}} + \tilde{\mathbf{r}}, \quad \text{where } \tilde{\mathbf{r}} \in \tilde{R}^n.$$
 (2)

Here \tilde{M} , \tilde{c} , \tilde{s} , \tilde{r} have the obvious meaning, except that we put the last component of \tilde{s} and \tilde{r} equal to 0 respectively 1, and \tilde{R} is the \mathbb{Z} -subalgebra of Z_0 generated by all $\tilde{\xi}_{ij}$ with $j \neq n$. Choosing **a** such that $a_n = (-1)^{n-1}$ we have $x_{\mathbf{a}} \in SL_n$. Since $d(x_{\mathbf{a}}) = 1$, we have $d' \neq 0$ and therefore det $(\tilde{M}) = \tilde{d} \neq 0$. Furthermore, for i = 1, ..., n - 1, $(\tilde{s})_i = \tilde{s}_i \in Z_0 \cap Z_1$ and Z_1 is generated by $u_1, ..., u_{n-1}$. It follows that $\tilde{\xi}_{1n}, ..., \tilde{\xi}_{nn}$ are in the subfield of Q(Z) generated by the $\tilde{\xi}_{ij}$ with $j \neq n$ and $u_1, ..., u_{n-1}$. Now we will eliminate the generators $\xi_{11}, \ldots, \xi_{n-1,n-1}$. We have

$$z_{\overline{\varpi}_1}^2 = \tilde{\Delta}_1 = \tilde{\xi}_{11}$$

and for k = 2, ..., n - 1 we have, by the Laplace expansion rule,

$$z_{\varpi_k}^2 = \tilde{\Delta}_k = \tilde{\xi}_{kk} \tilde{\Delta}_{k-1} + t_k = \tilde{\xi}_{kk} z_{\varpi_{k-1}}^2 + t_k,$$

where t_k is in the \mathbb{Z} -subalgebra of Z generated by the $\tilde{\xi}_{ij}$ with $i, j \leq k$ and $(i, j) \neq (k, k)$. It follows by induction on k that for $k = 1, ..., n - 1, \tilde{\xi}_{11}, ..., \tilde{\xi}_{kk}$ are in the subfield of Q(Z) generated by the $z_{\overline{\omega}_i}$ with $i \leq k$ and the $\tilde{\xi}_{ij}$ with $i, j \leq k$ and $i \neq j$. \Box

3. Unique factorisation

Recall that *Nagata's lemma* asserts the following: If x is a non-zero prime element of a Noetherian integral domain S such that $S[x^{-1}]$ is a UFD, then S is a UFD. See [11, Lemma 19.20]. Here an element is called prime if it generates a prime ideal. The non-zero prime elements of an integral domain are always irreducible and in a UFD the converse holds. In Theorem 4 we will see that, by Nagata's lemma, it suffices to show that the algebra $Z/(\tilde{d})$ is an integral domain in order to prove that Z is a UFD. To prove this we will show by induction that the two sequences of algebras (to be defined later):

$$K[SL_n]/(d') \cong \bar{A}(K) = \bar{B}_{0,0}(K) \subseteq \bar{B}_{0,1}(K) \subseteq \dots \subseteq \bar{B}_{0,n-1}(K) = \bar{B}_0(K)$$

in characteristic p and

$$\bar{B}_0(\mathbb{C}) \subseteq \bar{B}_1(\mathbb{C}) \subseteq \cdots \subseteq \bar{B}_{n-1}(\mathbb{C}) = \bar{B}(\mathbb{C})$$

over \mathbb{C} , consist of integral domains. Lemma 2 is, among other things, needed to show that $\overline{A}(K) \cong K[\operatorname{SL}_n]/(d')$ is an integral domain. Lemmas 3 and 4 are needed to obtain bases over \mathbb{Z} (see Proposition 1), which, in turn, is needed to pass to fields of positive characteristic and to apply mod *p* reduction (see Lemma 6).

3.1. The case n = 2

In this subsection we show that the centre of $U_{\varepsilon,P}(\mathfrak{sl}_2)$ is always a UFD, without any extra assumptions on *l*. The standard generators for $U = U_{\varepsilon,P}(\mathfrak{sl}_2)$ are *E*, *F*, $K_{\overline{\omega}}$ and $K_{\overline{\omega}}^{-1}$. Put $K = K_{\alpha} = K_{\overline{\omega}}^2$, $z_1 = z_{\overline{\omega}} = K_{\overline{\omega}}^l$, $z = z_{\alpha} = z_1^2 = K^l$. Furthermore, following [8, 3.1], we put $c = (\varepsilon - \varepsilon^{-1})^l$, $x = -cz^{-1}E^l$, $y = cF^l$. Then *x*, *y* and *z*₁ are algebraically independent over \mathbb{C} and $Z_0 = \mathbb{C}[x, y, z_1][z_1^{-1}]$ (see [8, §3]).

We have $U^0 = \mathbb{C}[K_{\varpi}, K_{\varpi}^{-1}]$ and $U^{0\tilde{W}} = \mathbb{C}[K, K^{-1}]^W = \mathbb{C}[K + K^{-1}]$. Identifying U^0 and $\mathbb{C}P$, we have $\operatorname{sym}(2\varpi) = K + K^{-1}$ and $\operatorname{sym}(2l\varpi) = z + z^{-1}$. Put $u = \bar{h}(\operatorname{sym}(2\varpi))$. By the restriction theorem for U, Z_1 is a polynomial algebra in u. Denote the trace map on Mat₂ by tr. Then tr $|_T = \operatorname{sym}(\varpi)$. By the restriction theorem for $\mathbb{C}[G]$ and Theorem 1(ii),

432

tr̃ generates $Z_0 \cap Z_1$. Furthermore tr̃ = $\bar{h}(z + z^{-1})$, by Theorem 1(iii). Let $f \in \mathbb{C}[u]$ be the polynomial with $z + z^{-1} = f(K + K^{-1})$. Then tr̃ = f(u). From the formulas in [8, 5.2] it follows that tr̃ = $-zxy + z + z^{-1}$.

By the construction from Subsection 1.5 (we take $Z'_0 = Z_0$), Z is isomorphic to the quotient of the localised polynomial algebra $\mathbb{C}[x, y, z_1, u][z_1^{-1}]$ by the ideal generated by $-z_1^2xy + z_1^2 + z_1^{-2} - f(u)$. Clearly x, u and z_1 generate the field of fractions of Z. In particular they are algebraically independent. So $Z[x^{-1}]$ is isomorphic to the localised polynomial algebra $\mathbb{C}[x, z_1, u][z_1^{-1}, x^{-1}]$ and therefore a UFD. By Nagata's lemma it suffices to show that x is a prime element in Z. But Z/(x) is isomorphic to the quotient of $\mathbb{C}[y, z_1, u][z_1^{-1}]$ by the ideal generated by $z_1^2 + z_1^{-2} - f(u)$. This ideal is also generated by $z_1^4 - f(u)z_1^2 + 1$. So it suffices to show that $z_1^4 - f(u)z_1^2 + 1$ is irreducible in $\mathbb{C}[y, z_1, u][z_1^{-1}]$. From the fact that f is of odd degree l > 0 (see e.g. Lemma 4 below), one easily deduces that $z_1^4 - f(u)z_1^2 + 1$ is irreducible in $\mathbb{C}[y, z_1, u][z_1^{-1}]$, so it is also irreducible in $\mathbb{C}[y, z_1, u][z_1^{-1}]$, so it is also irreducible in this ring.

3.2. SL_n and the function d

The next lemma is needed for the proof of Theorem 4. The Jacobian matrix below consists of the partial derivatives of the functions in question with respect to the variables ξ_{ij} .

Lemma 1. If $n \ge 3$, then there exists a matrix $A \in SL_n(\mathbb{Z})$ such that d(A) = 0 and such that some 2*n*-th order minor of the Jacobian matrix of $(s_1, \ldots, s_n, d, \Delta_1, \ldots, \Delta_{n-1})$ is ± 1 at A.

Proof. The computations below are very similar to those in [16, Section 6]. We denote by \mathcal{X} the $(n \times n)$ -matrix (ξ_{ij}) and for an $(n \times n)$ -matrix $B = (b_{ij})$ and $\Lambda_1, \Lambda_2 \subseteq \{1, \ldots, n\}$ we denote by B_{Λ_1, Λ_2} the matrix $(b_{ij})_{i \in \Lambda_1, j \in \Lambda_2}$, where the indices are taken in the natural order.

In the computations below we will use the following two facts: For $\Lambda_1, \Lambda_2 \subseteq \{1, ..., n\}$ with $|\Lambda_1| = |\Lambda_2|$ we have

$$\partial_{ij} \left(\det(\mathcal{X}_{\Lambda_1,\Lambda_2}) \right) = \begin{cases} (-1)^{n_1(i) + n_2(j)} \det(\mathcal{X}_{\Lambda_1 \setminus \{i\},\Lambda_2 \setminus \{j\}}) & \text{when } (i, j) \in (\Lambda_1 \times \Lambda_2), \\ 0 & \text{when } (i, j) \notin (\Lambda_1 \times \Lambda_2), \end{cases}$$

where $n_1(i)$ denotes the position in which *i* occurs in Λ_1 and similarly for $n_2(j)$.

For $k \leq n$ we have $s_k = \sum_{\Lambda} \det(\mathcal{X}_{\Lambda,\Lambda})$ where the sum ranges over all k-subsets Λ of $\{1, \ldots, n\}$.

Put $\alpha = ((1 1), (2 2), (2 3), \dots, (2 n - 1), (n n), (n - 1 n), \dots, (2 n), (2 1), (1 2))$, and let α_i denote the *i*th component of α . We let *A* be the following $(n \times n)$ -matrix:

$$A = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & (-1)^n \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$

The columns of the Jacobian matrix are indexed by the pairs (i, j) with $1 \le i, j \le n$. Let M_{α} be the 2*n*-square submatrix of the Jacobian matrix consisting of the columns with indices from α . By permuting in *A* the first row to the last position and interchanging the first two columns, we see that det(A) = 1. We will show that d(A) = 0 and that the minor $d_{\alpha} := \det(M_{\alpha})$ of the Jacobian matrix is ± 1 at *A*.

First we consider the Δ_k , $k \in \{1, ..., n-1\}$. By inspecting the matrix A and using the fact that $\partial_{ij}\Delta_k = 0$ if i > k or j > k, we deduce the following facts:

$$(\partial_{2i}\Delta_k)(A) = \begin{cases} \pm 1 & \text{if } i = k, \\ 0 & \text{if } i > k, \end{cases} \text{ for } i, k \in \{1, \dots, n-1\}, i \neq 1, \\ (\partial_{11}\Delta_1)(A) = 1, \\ (\partial_{12}\Delta_k)(A) = (\partial_{21}\Delta_k)(A) = 0 \text{ for all } k \in \{1, \dots, n-1\}, \end{cases}$$

and

$$(\partial_{in}\Delta_k)(A) = 0$$
 for all $k \in \{1, \dots, n-1\}$ and all $i \in \{1, \dots, n\}$.

Now we consider the s_k . Let $i \in \{1, ..., n\}$ and let $\Lambda \subseteq \{1, ..., n\}$. Assume that $\partial_{in}(\det(\mathcal{X}_{\Lambda,\Lambda}))$ is non-zero at Λ . Then we have:

- $i, n \in \Lambda$;
- $j \in \Lambda \Rightarrow j 1 \in \Lambda$ for all j with $4 \leq j \leq n$ and $j \neq i$, since otherwise there would be a zero row (in $\mathcal{X}_{\Lambda \setminus \{i\}, \Lambda \setminus \{n\}}(A) = A_{\Lambda \setminus \{i\}, \Lambda \setminus \{n\}}$);
- $j \in \Lambda \Rightarrow j + 1 \in \Lambda$ for all j with $3 \le j \le n 1$, since otherwise there would be a zero column.

First assume that $i \ge 3$ and that $|\Lambda| \le n - i + 1$. Then it follows that $\Lambda = \{i, ..., n\}$ and that $\partial_{in}(\det(\mathcal{X}_{\Lambda,\Lambda}))(\Lambda) = \pm 1$.

Next assume that i = 2. Then it follows that either $\Lambda = \{2, ..., n\}$ or $\Lambda = \{1, ..., n\}$. In the first case we have $\partial_{in}(\det(\mathcal{X}_{\Lambda,\Lambda}))(A) = (-1)^{1+n-1} = (-1)^n$. In the second case we have $\partial_{in}(\det(\mathcal{X}_{\Lambda,\Lambda}))(A) = (-1)^{2+n} = (-1)^n$.

Now assume that i = 1. Then it follows that either $\Lambda = \{1, 3, ..., n\}$ or $\Lambda = \{1, ..., n\}$. In the first case we have $\partial_{in}(\det(\mathcal{X}_{\Lambda,\Lambda}))(A) = (-1)^{1+n-1} = (-1)^n$. In the second case we have $\partial_{in}(\det(\mathcal{X}_{\Lambda,\Lambda}))(A) = (-1)^{1+n} \cdot (-1) = (-1)^n$. So for $i, k \in \{1, \dots, n\}$ we have:

$$(\partial_{in}s_k)(A) = \begin{cases} \pm 1 & \text{if } i \ge 3 \text{ and } i+k=n+1, \\ 0 & \text{if } i \ge 3 \text{ and } i+k < n+1, \\ (-1)^n & \text{if } i \in \{1,2\} \text{ and } k \in \{n-1,n\}, \\ 0 & \text{if } i \in \{1,2\} \text{ and } k < n-1. \end{cases}$$

It follows from the above equalities that in M(A) the first 2 columns are equal. So d(A) = det(M(A)) = 0.

Let $\Lambda \subseteq \{1, ..., n\}$. Assume that $\partial_{12}(\det(\mathcal{X}_{\Lambda,\Lambda}))$ is non-zero at A. Then $1, 2 \in \Lambda$ and the first row is zero. A contradiction. So $\partial_{12}(\det(\mathcal{X}_{\Lambda,\Lambda}))$ is zero at A. Now assume that $\partial_{21}(\det(\mathcal{X}_{\Lambda,\Lambda}))$ is non-zero at A. Then

- $1, 2 \in \Lambda;$
- $n \in \Lambda$, since otherwise the first row would be zero;
- $j \in \Lambda \Rightarrow j 1 \in \Lambda$ for all j with $4 \le j \le n$, since otherwise there would be a zero row.

So $\Lambda = \{1, ..., n\}$ and $\partial_{in}(\det(\mathcal{X}_{\Lambda,\Lambda}))(A) = \pm 1$. Thus we have $(\partial_{12}s_k)(A) = 0$ for all $k \in \{1, ..., n\}$ and

$$(\partial_{21}s_k)(A) = \begin{cases} \pm 1 & \text{if } k = n, \\ 0 & \text{otherwise.} \end{cases}$$

Finally, we consider the function *d*. Let $i \in \{1, ..., n\}$, let $\Lambda \subseteq \{1, ..., n\}$ and assume that $\partial_{12}\partial_{in}(\det(\mathcal{X}_{\Lambda,\Lambda}))$ is non-zero at *A*. Then we have:

- 1, 2, $i, n \in \Lambda$ and $i \neq 1$;
- i = 2, since otherwise the first row would be zero;
- $j \in \Lambda \Rightarrow j 1 \in \Lambda$ for all j with $4 \le j \le n$, since otherwise there would be a zero row.

It follows that i = 2, $\Lambda = \{1, ..., n\}$ and $\partial_{12}\partial_{in}(\det(\mathcal{X}_{\Lambda,\Lambda})) = \pm 1$. So for $i, k \in \{1, ..., n\}$ we have:

$$(\partial_{12}\partial_{in}s_k)(A) = \begin{cases} \pm 1 & \text{if } (i,k) = (2,n), \\ 0 & \text{if } (i,k) \neq (2,n). \end{cases}$$

We have

$$d = \sum_{\pi \in \mathfrak{S}_n} \operatorname{sgn}(\pi) \partial_{\pi(1)n}(s_1) \cdots \partial_{\pi(n)n}(s_n).$$
(3)

So, by the above,

$$(\partial_{12}d)(A) = \left(\sum \operatorname{sgn}(\pi)\partial_{\pi(1)n}(s_1)\partial_{\pi(2)n}(s_2)\cdots\partial_{\pi(n-1)n}(s_{n-1})\partial_{12}\partial_{2n}(s_n)\right)(A),$$

where the sum is over all $\pi \in \mathfrak{S}_n$ with $\pi(n) = 2$. From what we know about the $\partial_{in}s_k$ we deduce that the only permutation that survives in the above sum is given by $(\pi(1), \ldots, \pi(n)) = (n, n - 1, \ldots, 3, 1, 2)$ and that $(\partial_{12}d)(A) = \pm 1$.

If we permute the rows of $M_{\alpha}(A)$ in the order given by $\Delta_1, \ldots, \Delta_{n-1}, s_1, \ldots, s_n, d$ and take the columns in the order given by α , then the resulting matrix is lower triangular with ± 1 's on the diagonal. So we can conclude that $d_{\alpha}(A) = \det(M_{\alpha}(A)) = \pm 1$. \Box

In the remainder of this subsection K denotes an algebraically closed field.

Lemma 2.

- (i) *d* is an irreducible element of *K*[Mat_n].
- (ii) $K[SL_n]$ is a UFD.

(iii) The invertible elements of $K[SL_n]$ are the non-zero scalars.

(iv) $d', \Delta'_1, \ldots, \Delta'_{n-1}$ is are mutually inequivalent irreducible elements of $K[SL_n]$.

Proof. (i) The proof of this is completely analogous to that of Proposition 3 in [16]. One now has to work with the maximal parabolic subgroup *P* of GL_n that consists of the invertible matrices (a_{ij}) with $a_{ni} = 0$ for all i < n. The element *d* is then a semi-invariant of *P* with the weight det ξ_{nn}^{-n} (the restriction of this weight to the maximal torus of diagonal matrices is $n\varpi_{n-1}$).

(ii) In fact it is well known that the algebra of regular functions K[G] of a simply connected semi-simple algebraic group G over K is a UFD. See [15, the corollary to Proposition 1].

(iii) and (iv). Since Δ'_{n-1} is not everywhere non-zero on SL_n, it is not invertible in $K[SL_n]$. From the Laplace expansion for det with respect to the last row or the last column it is clear that we can eliminate ξ_{nn} using the relation det = 1, if we make Δ_{n-1} invertible. So we have an isomorphism $K[SL_n][\Delta'_{n-1}] \cong K[(\xi_{ij})_{(i,j)\neq(n,n)}][\Delta_{n-1}^{-1}]$. It maps $d', \Delta'_1, \ldots, \Delta'_{n-1}$ to respectively $d, \Delta_1, \ldots, \Delta_{n-1}$, since these polynomials do not contain the variable ξ_{nn} . The invertible elements of $K[(\xi_{ij})_{(i,j)\neq(n,n)}][\Delta_{n-1}^{-1}]$ are the elements $\alpha \Delta_{n-1}^k$, $\alpha \in K \setminus \{0\}, k \in \mathbb{Z}$, since Δ_{n-1} is irreducible in $K[(\xi_{ij})_{(i,j)\neq(n,n)}]$. So the invertible elements of $K[SL_n][\Delta'_{n-1}^{-1}]$ are the elements $\alpha \Delta'_{n-1}^k$, $\alpha \in K \setminus \{0\}, k \in \mathbb{Z}$. This shows that Δ'_{n-1} is irreducible in $K[SL_n]$, since otherwise there would be more invertible elements in $K[SL_n][\Delta'_{n-1}^{-1}]$. So the invertible elements of $K[SL_n]$ are the non-zero scalars. Since d and the Δ_i are not scalar multiples of each other, all that remains is to show that d' and $\Delta'_1, \ldots, \Delta'_{n-2}$ are irreducible. We only do this for d', the argument for the Δ'_i is completely similar. Since d is prime in $K[(\xi_{ij})_{(i,j)\neq(n,n)}]$ and does not divide Δ_{n-1} , it follows that d is prime in $K[(\xi_{ij})_{(i,j)\neq(n,n)}][\Delta_{n-1}^{-1}]$ and therefore that d' is prime in $K[SL_n][\Delta'_{n-1}^{-1}]$. So assume that

$$\Delta'_{n-1}f = gd' \tag{(*)}$$

for some $f, g \in K[SL_n]$. If we take $\mathbf{a} \in K^n$ such that $a_n = (-1)^{n-1}$, then we have $x_{\mathbf{a}} \in SL_n$, $d'(x_{\mathbf{a}}) = 1$ and $\Delta'_{n-1}(x_{\mathbf{a}}) = 0$. So Δ'_{n-1} does not divide d'. But then Δ'_{n-1} divides g, since Δ'_{n-1} is irreducible. Cancelling a factor Δ'_{n-1} on both sides of (*), we obtain that $f \in (d')$. \Box

3.3. Generators and relations and a \mathbb{Z} -form for $\tilde{Z}_0[z_{\varpi_1}, \ldots, z_{\varpi_{n-1}}]Z_1$

For the basics about monomial orderings and Gröbner bases I refer to [5].

Lemma 3. If we give the monomials in the variables ξ_{ij} the lexicographic monomial ordering for which $\xi_{nn} > \xi_{nn-1} > \cdots > \xi_{n1} > \xi_{n-1n} > \cdots > \xi_{n-11} > \cdots > \xi_{11}$, then det has leading term $\pm \xi_{nn} \cdots \xi_{22} \xi_{11}$ and d has leading term $\pm \xi_{nn-1}^{n-1} \cdots \xi_{32}^2 \xi_{21}$.

Proof. I leave the proof of the first assertion to the reader. For the second assertion we use the notation and the formulas of Subsection 3.2. The leading term of a non-zero polynomial *f* is denoted by LT(*f*). Let $i \in \{1, ..., n\}$ and $\Lambda \subseteq \{1, ..., n\}$ with $|\Lambda| = k \ge 2$ and assume that $\partial_{in}(\det(\mathcal{X}_{\Lambda,\Lambda})) \neq 0$. Then $i, n \in \Lambda$. Now we use the fact that no monomial in $\partial_{in}(\det(\mathcal{X}_{\Lambda,\Lambda}))$ contains a variable with row index equal to *i* or with column index equal to *n* or a product of two variables which have the same row or column index.

First assume that i > n - k + 1. Then

$$\mathrm{LT}\big(\partial_{in}\big(\mathrm{det}(\mathcal{X}_{\Lambda,\Lambda})\big)\big) \leqslant \pm \xi_{nn-1} \cdots \xi_{i+1} \xi_{i-1} \xi_{i-1} \cdots \xi_{n-k+1} \xi_{n-k+1}$$

with equality if and only if $\Lambda = \{n, n - 1, ..., n - k + 1\}$. Now assume that i = n - k + 1. Then

$$\operatorname{LT}\left(\partial_{in}\left(\operatorname{det}(\mathcal{X}_{\Lambda,\Lambda})\right)\right) \leq \pm \xi_{nn-1}\cdots\xi_{n-k+2n-k+1}$$

with equality if and only if $\Lambda = \{n, n-1, ..., n-k+1\}$. Finally assume that i < n-k+1. Then

$$\mathrm{LT}\big(\partial_{in}\big(\mathrm{det}(\mathcal{X}_{\Lambda,\Lambda})\big)\big) \leqslant \pm \xi_{nn-1} \cdots \xi_{n-k+3n-k+2} \xi_{n-k+2i}$$

with equality if and only if $\Lambda = \{n, n - 1, \dots, n - k + 2, i\}$.

So for $i, k \in \{1, ..., n\}$ with $k \ge 2$ we have:

$$\mathrm{LT}(\partial_{in}s_k) = \begin{cases} \pm \xi_{n\,n-1} \cdots \xi_{i+1\,i}\xi_{i-1\,i-1} \cdots \xi_{n-k+1\,n-k+1} & \text{if } i+k>n+1, \\ \pm \xi_{n\,n-1} \cdots \xi_{n-k+2\,n-k+1} & \text{if } i+k=n+1, \\ \pm \xi_{n\,n-1} \cdots \xi_{n-k+3\,n-k+2}\xi_{n-k+2\,i} & \text{if } i+k< n+1. \end{cases}$$

In particular $LT(\partial_{in}s_k) \leq \pm \xi_{nn-1} \cdots \xi_{n-k+1,n-k+1}$ with equality if and only if i + k = n + 1. But then, by Eq. (3), $LT(d) = LT(\partial_{nn}s_1)LT(\partial_{n-1n}s_2)\cdots LT(\partial_{1n}s_n) = \pm \xi_{nn-1}^{n-1} \cdots \xi_{32}^2 \xi_{21}$. \Box

Recall that the degree reverse lexicographical ordering on the monomials $u^{\alpha} = u_1^{\alpha_1} \cdots u_k^{\alpha_k}$ in the variables u_1, \ldots, u_k is defined as follows: $u^{\alpha} > u^{\beta}$ if $\deg(u^{\alpha}) > \deg(u^{\beta})$ or $\deg(u^{\alpha}) = \deg(u^{\beta})$ and $\alpha_i < \beta_i$ for the last index *i* with $\alpha_i \neq \beta_i$.

Lemma 4. Let $f_i \in \mathbb{Z}[u_1, \ldots, u_{n-1}]$ be the polynomial such that $\operatorname{sym}(l\varpi_i) = f_i(\operatorname{sym}(\varpi_1), \ldots, \operatorname{sym}(\varpi_{n-1}))$. If we give the monomials in the u_i the degree reverse lexicographic monomial ordering for which $u_1 > \cdots > u_{n-1}$, then f_i has leading term u_i^l . Furthermore, the monomials that appear in $f_i - u_i^l$ are of total degree $\leq l$ and have exponents $< l.^6$

Proof. Let σ_i be the *i*th elementary symmetric function in the variables x_1, \ldots, x_n and let $\lambda_i \in P = X(T)$ be the character $A \mapsto A_{ii}$ of T. Then $\operatorname{sym}(\varpi_i) = \sigma_i(e(\lambda_1), \ldots, e(\lambda_n))$ for $i \in \{1, \ldots, n-1\}$. So the f_i can be found as follows. For $i \in \{1, \ldots, n-1\}$, determine $F_i \in \mathbb{Z}[u_1, \ldots, u_n]$ such that $\sigma_i(x_1^l, \ldots, x_n^l) = F_i(\sigma_1, \ldots, \sigma_n)$. Then $f_i = F_i(u_1, \ldots, u_{n-1}, 1)$. It now suffices to show that for $i \in \{1, \ldots, n-1\}$, $F_i - u_i^l$ is a \mathbb{Z} -linear combination of monomials in the u_j that have exponents < l, are of total degree < l and that contain some u_j with j > i (the monomials that contain u_n will become of total degree < l when u_n is replaced by 1).

Fix $i \in \{1, ..., n-1\}$. Consider the following properties of a monomial in the x_i :

- (x1) the monomial contains at least i + 1 variables;
- (x2) the exponents are $\leq l$;
- (x3) the number of exponents equal to l is $\leq i$;

and the following properties of a monomial in the u_i :

- (u1) the monomial contains a variable u_j for some j > i;
- (u2) the total degree is $\leq l$;
- (u3) the exponents are < l.

Let *h* be a symmetric polynomial in the x_i and let *H* be the polynomial in the u_i such that $h = H(\sigma_1, \ldots, \sigma_n)$. Give the monomials in the x_i the lexicographic monomial ordering for which $x_1 > \cdots > x_n$. We will show by induction on the leading monomial of *h* that if each monomial that appears in *h* has property (x1) respectively properties (x2) respectively properties (x1), (x2) and (x3), then each monomial that appears in *H* has property (u1) respectively properties (u1), (u2) and (u3). Let $x^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ be the leading monomial of *h*. Then $\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_n$. Put $\beta = (\alpha_1 - \alpha_2, \ldots, \alpha_{n-1} - \alpha_n, \alpha_n)$. Let *k* be the last index for which $\alpha_k \ne 0$. Then $\beta = (\alpha_1 - \alpha_2, \ldots, \alpha_{k-1} - \alpha_k, \alpha_k, 0, \ldots, 0)$. If x^{α} has property (x1), then $k \ge i + 1$, u^{β} has property (u1) and the monomials that appears in σ^{β} .

If x^{α} has property (x2), then $\alpha_1 \leq l$, u^{β} is of total degree $\alpha_1 \leq l$ and the monomials that appear in σ^{β} have exponents $\leq \beta_1 + \cdots + \beta_k = \alpha_1 \leq l$. Now assume that x^{α} has properties (x1), (x2) and (x3). For j < k we have $\beta_j = \alpha_j - \alpha_{j+1} < l$, since $\alpha_{j+1} \neq 0$. So we have to show that $\beta_k = \alpha_k < l$. If α_k were equal to l, then we would have $\alpha_1 = \cdots = \alpha_k = l$, by (x2). This contradicts (x3), since we have $k \geq i + 1$ by (x1). Finally we show that the

⁶ So our f_i are related to the polynomials $P_i = x_i^l - \sum_{\mu} d_{i\mu} x_{\mu}$ from the proof of Proposition 6.4 in [8] as follows: $P_i = f_i(x_1, \ldots, x_{n-1}) - \text{sym}(l\varpi_i)$. In particular $d_{i0} = \text{sym}(l\varpi_i)$ and $d_{i\mu} \in \mathbb{Z}$ for all $\mu \in P \setminus \{0\}$ (we are, of course, in the situation that $\mathfrak{g} = \mathfrak{sl}_n$).

monomials that appear in σ^{β} have property (x3). If $\alpha_1 < l$, then all these monomials have exponents < l. So assume $\alpha_1 = l$. Let j be the smallest index for which $\beta_j \neq 0$. Then the number of exponents equal to l in a monomial that appears in σ^{β} is $\leq j$. On the other hand, $\alpha_1 = \cdots = \alpha_j = l$. So we must have $j \leq i$, since x^{α} has property (x3).

Now we can apply the induction hypothesis to $h - c\sigma^{\beta}$, where c is the leading coefficient of h.

The assertion about $F_i - u_i^l$ now follows, because the monomials that appear in $\sigma_i(x_1^l, \ldots, x_n^l) - \sigma_i^l$ have the properties (x1), (x2) and (x3). \Box

From now on we denote $z_{\overline{\omega}_i}$ by z_i .⁷ Let $\mathbb{Z}[SL_n]$ be the \mathbb{Z} -subalgebra of $\mathbb{C}[SL_n]$ generated by the ξ'_{ij} and A be the \mathbb{Z} -subalgebra of Z generated by the $\tilde{\xi}_{ij}$. So $A = \pi^{co}(\mathbb{Z}[SL_n])$. Let B be the \mathbb{Z} -subalgebra generated by the elements $\tilde{\xi}_{ij}$, u_1, \ldots, u_{n-1} and z_1, \ldots, z_{n-1} . For a commutative ring R we put $A(R) = R \otimes_{\mathbb{Z}} A$ and $B(R) = R \otimes_{\mathbb{Z}} B$. Clearly we can identify $A(\mathbb{C})$ with \tilde{Z}_0 . In the proposition below "natural homomorphism" means a homomorphism that maps ξ_{ij} to $\tilde{\xi}_{ij}$ and, if this applies, the variables u_i and z_i to the equally named elements of Z. The polynomials f_i below are the ones defined in Lemma 4.

Proposition 1. *The following holds:*

- (i) The kernel of the natural homomorphism from the polynomial algebra $\mathbb{Z}[(\xi_{ij})_{ij}, u_1, \dots, u_{n-1}, z_1, \dots, z_{n-1}]$ to *B* is generated by the elements det $-1, f_1 s_1, \dots, f_{n-1} s_{n-1}, z_1^2 \Delta_1, \dots, z_{n-1}^2 \Delta_{n-1}$.
- (ii) The homomorphism $B(\mathbb{C}) \to Z$, given by the universal property of ring transfer, is injective.
- (iii) A is a free Z-module and B is a free A-module with the monomials u₁^{k₁} ... u_{n-1}<sup>k<sub>n-1</sup>z₁^{m₁} ... z_{n-1}<sup>m_{n-1}, 0 ≤ k_i < l, 0 ≤ m_i < 2, as a basis.
 (iv) A[z₁,..., z_{n-1}] ∩ Z₁ = A ∩ Z₁ = Z[š₁,..., š_{n-1}] and B ∩ Z₁ is a free A ∩ Z₁-module
 </sup></sub></sup>
- (iv) $A[z_1, \ldots, z_{n-1}] \cap Z_1 = A \cap Z_1 = \mathbb{Z}[\tilde{s}_1, \ldots, \tilde{s}_{n-1}]$ and $B \cap Z_1$ is a free $A \cap Z_1$ -module with the monomials $u_1^{k_1} \cdots u_{n-1}^{k_{n-1}}, 0 \leq k_i < l, as a basis.$

Proof. Let Z'_0 be the \mathbb{C} -subalgebra of Z generated by the $\tilde{\xi}_{ij}$ and z_1, \ldots, z_{n-1} . As we have seen in Subsection 1.5, the z_i satisfy the relations $z_i^2 = \tilde{\Delta}_i$. The $\tilde{\Delta}_i$ are part of a generating transcendence basis of the field of fractions $\operatorname{Fr}(\tilde{Z}_0)$ of \tilde{Z}_0 by arguments very similar to those at the end of the proof of Theorem 3. This shows that the monomials $z_1^{m_1} \cdots z_{n-1}^{m_{n-1}}$, $0 \leq m_i < 2$, form a basis of $\operatorname{Fr}(Z'_0)$ over $\operatorname{Fr}(\tilde{Z}_0)$ and of Z'_0 over \tilde{Z}_0 . It follows that the kernel of the natural homomorphism from the polynomial algebra $\mathbb{C}[(\xi_{ij})_{ij}, z_1, \ldots, z_{n-1}]$ to Z'_0 is generated by the elements det $-1, z_1^2 - \Delta_1, \ldots, z_{n-1}^2 - \Delta_{n-1}$. So we have generators and relations for Z'_0 . By the construction from Subsection 1.5 we then obtain that the kernel I of the natural homomorphism from the polynomial algebra $\mathbb{C}[(\xi_{ij})_{ij}, u_1, \ldots, u_{n-1}, z_1, \ldots, z_{n-1}]$ to Z'_0Z_1 is generated by the elements det $-1, f_1 - s_1, \ldots, f_{n-1} - s_{n-1}, z_1^2 - \Delta_1, \ldots, z_{n-1}^2 - \Delta_{n-1}$.

⁷ In [8,9] z_{α_i} is denoted by z_i .

Now we give the monomials in the variables $(\xi_{ij})_{ij}, u_1, \ldots, u_{n-1}, z_1, \ldots, z_{n-1}$ a monomial ordering which is the lexicographical product of an arbitrary monomial ordering on the monomials in the z_i , the monomial ordering of Lemma 4 on the monomials in the u_i and the monomial ordering of Lemma 3 on the ξ_{ij} .⁸ Then the ideal generators mentioned above have leading monomials $\xi_{nn} \cdots \xi_{22} \xi_{11}, u_1^l, \ldots, u_{n-1}^l, z_1^2, \ldots, z_{n-1}^2$ and the leading coefficients are all ± 1 . Since the leading monomials have gcd 1, the ideal generators form a Gröbner basis; see [5, Chapter 2, §9, Theorem 3 and Proposition 4], for example. Since the leading coefficients are all ± 1 , it follows from the division with remainder algorithm that the ideal of $\mathbb{Z}[(\xi_{ij})_{ij}, u_1, \ldots, u_{n-1}, z_1, \ldots, z_{n-1}]$ generated by these elements consists of the polynomials in I that have integral coefficients and that it has the \mathbb{Z} -span of the monomials that are not divisible by any of the above leading monomials as a direct complement. This proves (i) and (ii).

(iii) The canonical images of the above monomials form a \mathbb{Z} -basis of B. These monomials are the products of the monomials in the ξ_{ij} that are not divisible by $\xi_{nn} \cdots \xi_{22}\xi_{11}$ and the restricted monomials mentioned in the assertion. The canonical images of the monomials in the ξ_{ij} that are not divisible by $\xi_{nn} \cdots \xi_{22}\xi_{11}$ form a \mathbb{Z} -basis of A.

(iv) As we have seen, the monomials with exponents < 2 in the z_i form a basis of the \tilde{Z}_0 -module Z'_0 . So $A[z_1, \ldots, z_{n-1}] \cap \tilde{Z}_0 = A$. Therefore, by Theorem 1(ii), $A[z_1, \ldots, z_{n-1}] \cap Z_1 = A \cap Z_1 = \pi^{co}(\mathbb{Z}[SL_n]^{SL_n})$. Now $(\mathbb{Z}P)^W = \mathbb{Z}[sym(\varpi_1), \ldots, sym(\varpi_{n-1})]$ (see [3, No. VI.3.4, Theorem 1]) and the s'_i are in $\mathbb{Z}[SL_n]$, so $\mathbb{Z}[SL_n]^{SL_n} = \mathbb{Z}[s'_1, \ldots, s'_{n-1}]$ by the restriction theorem for $\mathbb{C}[SL_n]$. This proves the first assertion. From the proof of Theorem 2 we know that the given monomials form a basis of Z_1 over $Z_0 \cap Z_1$ and a basis of Z over Z_0 . So an element of Z is in Z_1 if and only if its coefficients with respect to this basis are in $Z_0 \cap Z_1$. The second assertion now follows from (iii). \Box

By (ii) of the above proposition we may identify $B(\mathbb{C})$ with $\tilde{Z}_0[z_1, \ldots, z_{n-1}]Z_1$ and $B(\mathbb{C})[\tilde{\Delta}_1^{-1}, \ldots, \tilde{\Delta}_{n-1}^{-1}]$ with Z.

Put $\overline{Z} = Z/(\overline{d})$. For the proof of Theorem 4 we need a version for \overline{Z} of Proposition 1. First we introduce some more notation. For $u \in Z$ we denote the canonical image of u in \overline{Z} by \overline{u} . For $f \in \mathbb{C}[\operatorname{Mat}_n]$ we write \overline{f} instead of \overline{f} . Let \overline{A} be the \mathbb{Z} -subalgebra of \overline{Z} generated by the $\overline{\xi}_{ij}$ and let \overline{B} be the \mathbb{Z} -subalgebra generated by the elements $\overline{\xi}_{ij}$, $\overline{u}_1, \ldots, \overline{u}_{n-1}$ and $\overline{z}_1, \ldots, \overline{z}_{n-1}$. For a commutative ring R we put $\overline{A}(R) = R \otimes_{\mathbb{Z}} \overline{A}$ and $\overline{B}(R) = R \otimes_{\mathbb{Z}} \overline{B}$.

Proposition 1. *The following holds*:

- (i) The kernel of the natural homomorphism from the polynomial algebra $\mathbb{Z}[(\xi_{ij})_{ij}, u_1, \dots, u_{n-1}, z_1, \dots, z_{n-1}]$ to \overline{B} is generated by the elements det $-1, d, f_1 s_1, \dots, f_{n-1} s_{n-1}, z_1^2 \Delta_1, \dots, z_{n-1}^2 \Delta_{n-1}$.
- (ii) The kernel of the natural homomorphism $\mathbb{Z}[Mat_n] \to \overline{A}$ is (det 1, d).
- (iii) The homomorphism $\overline{B}(\mathbb{C}) \to \overline{Z}$, given by the universal property of ring transfer, is injective.

⁸ So the z_i are greater than the u_i which are greater than the ξ_{ij} .

- (iv) \overline{A} is a free \mathbb{Z} -module and \overline{B} is a free \overline{A} -module with the monomials $\overline{u}_1^{k_1}\cdots\overline{u}_{n-1}^{k_{n-1}}\overline{z}_1^{m_1}\cdots\overline{z}_{n-1}^{m_{n-1}}, 0 \leq k_i < l, 0 \leq m_i < 2$, as a basis.
- (v) The \bar{A} -span of the monomials $\bar{u}_1^{k_1} \cdots \bar{u}_{n-1}^{k_{n-1}}$, $0 \leq k_i < l$, is closed under multiplication.

Proof. From Lemma 2(iii) we deduce that $(A(\mathbb{C})[\tilde{\Delta}_1^{-1}, \dots, \tilde{\Delta}_{n-1}^{-1}]\tilde{d}) \cap A(\mathbb{C}) = A(\mathbb{C})\tilde{d}$. From this it follows, using the $A(\mathbb{C})$ -basis of $B(\mathbb{C})$, that $(Z\tilde{d}) \cap B(\mathbb{C})$, which is the kernel of the natural homomorphism $B(\mathbb{C}) \to \bar{Z}$, equals $B(\mathbb{C})\tilde{d}$. From (i) and (ii) of Proposition 1 or from its proof it now follows that the kernel of the natural homomorphism from the polynomial algebra $\mathbb{C}[(\xi_{ij})_{ij}, u_1, \dots, u_{n-1}, z_1, \dots, z_{n-1}]$ to \bar{Z} is generated by the elements det $-1, d, f_1 - s_1, \dots, f_{n-1} - s_{n-1}, z_1^2 - \Delta_1, \dots, z_{n-1}^2 - \Delta_{n-1}$.

Again using the $A(\mathbb{C})$ -basis of $B(\mathbb{C})$ we obtain that $(B(\mathbb{C})\tilde{d}) \cap A(\mathbb{C}) = A(\mathbb{C})\tilde{d}$. From this it follows that the kernel of the natural homomorphism $\mathbb{C}[\operatorname{Mat}_n] \to \overline{Z}$ is generated by det -1 and d.

By Lemma 3 we have $LT(d) = \pm \xi_{nn-1}^{n-1} \cdots \xi_{32}^2 \xi_{21}$ which has gcd 1 with the leading monomials of the other ideal generators, so the ideal generators mentioned above form a Gröbner basis over \mathbb{Z} . Now (i)–(iv) follow as in the proof of Proposition 1.

(v) This follows from the fact that the remainder modulo the Gröbner basis of a polynomial in $\mathbb{Z}[(\xi_{ij})_{ij}, u_1, \dots, u_{n-1}]$ is again in $\mathbb{Z}[(\xi_{ij})_{ij}, u_1, \dots, u_{n-1}]$. \Box

By (ii) and (iii) of the above proposition \overline{A} and $\overline{B}(\mathbb{C})[\overline{\Delta}_1^{-1}, \ldots, \overline{\Delta}_{n-1}^{-1}]$ can be identified with respectively $\mathbb{Z}[\operatorname{Mat}_n]/(\det - 1, d)$ and \overline{Z} . From (iv) it follows that, for any commutative ring R, $\overline{A}(R)$ embeds in $\overline{B}(R)$.

3.4. The theorem

Lemma 5. Let A be an associative algebra with 1 over a field F and let L be an extension of F. Assume that for every finite extension F' of F, $F' \otimes_F A$ has no zero divisors. Then the same holds for $L \otimes_F A$.

Proof. Assume that there exist $a, b \in L \otimes_F A \setminus \{0\}$ with ab = 0. Let $(e_i)_{i \in I}$ be an F-basis of A and let $c_{ij}^k \in F$ be the structure constants. Write $a = \sum_{i \in I} \alpha_i e_i$ and $b = \sum_{i \in I} \beta_i e_i$. Let I_a respectively I_b be the set of indices i such that $\alpha_i \neq 0$ respectively $\beta_i \neq 0$ and let J be the set of indices k such that $c_{ij}^k \neq 0$ for some $(i, j) \in I_a \times I_b$. Then I_a and I_b are non-empty and I_a , I_b and J are finite. Take $i_a \in I_a$ and $i_b \in I_b$. Since ab = 0, the following equations over F in the variables $x_i, i \in I_a, y_i, i \in I_b, u$ and v have a solution over L:

$$\sum_{i \in I_a, j \in I_b} c_{ij}^k x_i y_j = 0 \quad \text{for all } k \in J,$$
$$x_{i, u} = 1, \qquad y_{i_k} v = 1.$$

But then they also have a solution over a finite extension F' of F by Hilbert's Nullstellensatz. This solution gives us non-zero elements $a', b' \in F' \otimes_F A$ with a'b' = 0. \Box

Lemma 6. Let *R* be the valuation ring of a non-trivial discrete valuation of a field *F* and let *K* be its residue class field. Let *A* be an associative algebra with 1 over *R* which is free as an *R*-module and let *L* be an extension of *F*. Assume that for every finite extension K' of *K*, $K' \otimes_R A$ has no zero divisors. Then the same holds for $L \otimes_R A$.

Proof. Assume that there exist $a, b \in L \otimes_R A \setminus \{0\}$ with ab = 0. By the above lemma we may assume that $a, b \in F' \otimes_R A \setminus \{0\}$ for some finite extension F' of F. Let $(e_i)_{i \in I}$ be an R-basis of A. Let v be an extension to F' of the given valuation of F, let R' be the valuation ring of v, let K' be the residue class field and let $\delta \in R'$ be a uniformiser for v. Note that R' is a local ring and a principal ideal domain (and therefore a UFD) and that K' is a finite extension of K (see e.g. [6, Chapter 8, Theorem 5.1]). By multiplying a and b by suitable integral powers of δ we may assume that their coefficients with respect to the basis $(e_i)_{i \in I}$ are in R' and not all divisible by δ (in R'). By passing to the residue class field K we then obtain non-zero $a', b' \in K' \otimes_{R'} (R' \otimes_R A) = K' \otimes_R A$ with a'b' = 0. \Box

Remark. The above lemmas also hold if we replace "zero divisors" by "non-zero nilpotent elements."

For $t \in \{0, ..., n-1\}$ let \bar{B}_t be the \mathbb{Z} -subalgebra generated by the elements $\bar{\xi}_{ij}$, $\bar{u}_1, ..., \bar{u}_{n-1}$ and $\bar{z}_1, ..., \bar{z}_t$. So $\bar{B}_{n-1} = \bar{B}$. For a commutative ring R we put $\bar{B}_t(R) = R \otimes_{\mathbb{Z}} \bar{B}_t$. From (iv) and (v) of Proposition 1 we deduce that the monomials $\bar{u}_1^{k_1} \cdots \bar{u}_{n-1}^{k_{n-1}} \times \bar{z}_1^{m_1} \cdots \bar{z}_t^{m_t}$, $0 \leq k_i < l$, $0 \leq m_i < 2$, form a basis of \bar{B}_t over \bar{A} . So for any commutative ring R we have bases for $\bar{B}_t(R)$ over $\bar{A}(R)$ and over R. Note that $\bar{B}_t(R)$ embeds in $\bar{B}(R)$, since the \mathbb{Z} -basis of \bar{B}_t is part of the \mathbb{Z} -basis of \bar{B} .

Modifying the terminology of [11, §16.6], we define the *Jacobian ideal* of an *m*-tuple of polynomials $\varphi_1, \ldots, \varphi_m$ as the ideal generated by the $k \times k$ minors of the Jacobian matrix of $\varphi_1, \ldots, \varphi_m$, where k is the height of the ideal generated by the φ_i .

Theorem 4. If *l* is a power of an odd prime *p*, then *Z* is a unique factorisation domain.

Proof. We have seen in Subsection 3.1 that for n = 2 it holds without any extra assumptions on l, so assume that $n \ge 3$. For the elimination of variables in the proof of Theorem 3 we only needed the invertibility of \tilde{d} , so $Z[\tilde{d}^{-1}]$ is isomorphic to a localisation of a polynomial algebra and therefore a UFD. So, by Nagata's lemma, it suffices to prove that \tilde{d} is a prime element of Z, i.e. that $\tilde{Z} = Z/(\tilde{d})$ is an integral domain. We do this in 5 steps.

Step 1. $\overline{B}(K)$ is reduced for any field *K*.

We may assume that K is algebraically closed. Since $\overline{B}(K)$ is a finite $\overline{A}(K)$ -module it follows that $\overline{B}(K)$ is integral over $\overline{A}(K) \cong K[\operatorname{Mat}_n]/(\det - 1, d)$. So its Krull dimension is $n^2 - 2$. By Proposition $\overline{I}(i)$, $\overline{B}(K)$ is isomorphic to the quotient of a polynomial ring over K in $n^2 + 2(n - 1)$ variables by an ideal I which is generated by 2*n* elements.⁹ So $\overline{B}(K)$ is Cohen–Macaulay (see [11, Proposition 18.13]). Let \mathcal{V} be the closed subvariety of $(n^2 + 2(n - 1))$ -dimensional affine space defined by *I*. Then, by [11, Corollary 18.14], \mathcal{V} is equidimensional of dimension $n^2 - 2$. By Theorem 18.15 in [11] it suffices to show that the closed subvariety of \mathcal{V} defined by the Jacobian ideal of det $-1, d, f_1 - s_1, \ldots, f_{n-1} - s_{n-1}, z_1^2 - \Delta_1, z_{n-1}^2 - \Delta_{n-1}$ does not contain any of the irreducible components of \mathcal{V} . This amounts to showing that this subvariety is of codimension $\geqslant 1$ in \mathcal{V} , since \mathcal{V} equidimensional.

By Lemma 2, $(\det - 1, d)$ is a prime ideal of $K[\operatorname{Mat}_n]$. So we have an embedding $K[\operatorname{Mat}_n]/(\det - 1, d) \to K[\mathcal{V}]$ which is the comorphism of a finite surjective morphism of varieties $\mathcal{V} \to \mathcal{V}(\det - 1, d)$, where $\mathcal{V}(\det - 1, d)$ is the closed subvariety of Mat_n that consists of the matrices of determinant 1 on which d vanishes. This morphism maps the closed subvariety of \mathcal{V} defined by the Jacobian ideal of $\det - 1, d, f_1 - s_1, \ldots, f_{n-1} - s_{n-1}, z_1^2 - \Delta_1, \ldots, z_{n-1}^2 - \Delta_{n-1}$ into the closed subvariety of $\mathcal{V}(\det - 1, d)$ defined by the ideal generated by the 2*n*th order minors of the Jacobian matrix of $(s_1, \ldots, s_n, d, \Delta_1, \ldots, \Delta_{n-1})$ with respect to the variables ξ_{ij} . This follows easily from the fact that $s_n = \det$ and that the z_j and u_j do not appear in the s_i and Δ_i . Since finite morphisms preserve dimension (see e.g. [11, Corollary 9.3]), it suffices to show that the latter variety is of codimension ≥ 1 in $\mathcal{V}(\det - 1, d)$. Since $\mathcal{V}(\det - 1, d)$ is irreducible, this follows from Lemma 1(ii).

Step 2. $\overline{B}_0(K)$ is an integral domain for any field *K* of characteristic *p*.

We may assume that K is algebraically closed. From the construction of the f_i (see the proof of Lemma 4) and the additivity of the pth power map in characteristic p it follows that $f_i \equiv u_i^l \mod p$. So the kernel of the natural homomorphism from the polynomial algebra $K[(\xi_{ij})_{ij}, u_1, \dots, u_{n-1}, z_1, \dots, z_{n-1}]$ to $\overline{B}(K)$ is generated by the elements det $-1, d, u_1^l - s_1, \ldots, u_{n-1}^l - s_{n-1}$ and the $\bar{A}(K)$ -span of the monomials $\bar{u}_1^{k_1} \cdots \bar{u}_t^{k_t}$, $0 \leq k_i < l$, is closed under multiplication for each $t \in \{0, \ldots, n-1\}$. We show by induction on t that $\bar{B}_{0,t}(K) := \bar{A}(K)[\bar{u}_1, \dots, \bar{u}_t]$ is an integral domain for $t = 0, \dots, n-1$. For t = 0 this follows from Lemma 2 and Proposition $\overline{\overline{1}}(ii)$. Let $t \in \{1, ..., n - 1\}$ and assume that it holds for t - 1. Clearly $\overline{B}_{0,t}(K) = \overline{B}_{0,t-1}(K)[\overline{u}_t] \cong \overline{B}_{t-1}(K)[x]/(x^l - \overline{s}_t)$. So it suffices to prove that $x^{l} - \bar{s}_{t}$ is irreducible over the field of fractions of $\bar{B}_{0,t-1}(K)$. By the Vahlen–Capelli criterion or a more direct argument, it suffices to show that \bar{s}_t is not a *p*th power in the field of fractions of $\bar{B}_{0,t-1}(K)$. So assume that $\bar{s}_t = (v/w)^p$ for some $v, w \in \overline{B}_{0,t-1}(K)$ with $w \neq 0$. Then we have $v^p = \overline{s}_t w^p = \overline{u}_t^l w^p$. So with l' = l/p, we have $(v - \bar{u}_t^{l'} w)^p = 0$. But then $v - \bar{u}_t^{l'} w = 0$ by Step 1. Now recall that v and w can be expressed uniquely as $\bar{A}(K)$ -linear combinations of monomials in $\bar{u}_1, \ldots, \bar{u}_{t-1}$ with exponents < l. If such a monomial appears with a non-zero coefficient in w, then $\bar{u}_t^{l'}$ times this monomial appears with the same coefficient in the expression of $0 = v - \bar{u}_t^{l'} w$ as an $\bar{A}(K)$ linear combination of restricted monomials in $\bar{u}_1, \ldots, \bar{u}_{n-1}$. Since this is impossible, we must have w = 0. A contradiction.

⁹ The statement in Proposition $\overline{I}(i)$ is only for \overline{B} , but the fact that $\overline{B}(K) = K \otimes_{\mathbb{Z}} \overline{B}$ has the same presentation, the coefficients of the ideal generators reduced mod p, holds for very general reasons. See e.g. [2, No. II.3.6, Proposition 5 and its corollary].

Step 3. $\overline{B}_0(\mathbb{C})$ is an integral domain.

This follows immediately from Step 2 and Lemma 6 applied to the *p*-adic valuation of \mathbb{Q} and with $L = \mathbb{C}$.

Step 4. $\overline{B}_t(\mathbb{C})$ is an integral domain for t = 0, ..., n - 1.

We prove this by induction on t. For t = 0 it is the assertion of Step 3. Let $t \in \{1, ..., t\}$ n-1 and assume that it holds for t-1. Clearly $\bar{B}_t(\mathbb{C}) = \bar{B}_{t-1}(\mathbb{C})[\bar{z}_t] \cong \bar{B}_{t-1}(\mathbb{C})[x]/2$ $(x^2 - \bar{\Delta}_t)$. So it suffices to prove that $x^2 - \bar{\Delta}_t$ is irreducible over the field of fractions of $\bar{B}_{t-1}(\mathbb{C})$. Assume that $x^2 - \bar{\Delta}_t$ has a root in this field, i.e. that $\bar{\Delta}_t = (v/w)^2$ for some $v, w \in \overline{B}_{t-1}(\mathbb{C})$ with $w \neq 0$. By the same arguments as in the proof of Lemma 5 we may assume that for some finite extension F of \mathbb{Q} there exist $v, w \in \overline{B}_{t-1}(F)$ with $w \neq 0$ and $w^2 \overline{\Delta}_t = v^2$. Let v_2 be an extension to F of the 2-adic valuation of \mathbb{Q} , let S_2 be the valuation ring of ν_2 , let K be the residue class field and let $\delta \in S_2$ be a uniformiser for ν_2 . We may assume that the coefficients of v and w with respect to the Z-basis of B_{t-1} mentioned earlier are in S₂. Assume that the coefficients of w are all divisible by δ (in S₂). Then w = 0 in $\bar{B}_{t-1}(K)$ and therefore $v^2 = 0$ in $\bar{B}_{t-1}(K)$. But by Step 1, $\bar{B}_{t-1}(K)$ is reduced, so v = 0 in $\bar{B}_{t-1}(K)$ and all coefficients of v are divisible by δ . So, by cancelling a suitable power of δ in w and v, we may assume that not all coefficients of w are divisible by δ . By passing to the residue class field K we then obtain $v, w \in \overline{B}_{t-1}(K)$ with $w \neq 0$ and $w^2 \overline{\Delta}_t = v^2$. But then $(w\bar{z}_t - v)^2 = 0$ in $\bar{B}_t(K)$, since $\bar{z}_t^2 = \bar{\Delta}_t$ and K is of characteristic 2. The reducedness of $\bar{B}_t(K)$ (Step 1) now gives $w\bar{z}_t - v = 0$ in $\bar{B}_t(K)$. Now recall that v and w can be expressed uniquely as $\bar{A}(K)$ -linear combinations of the monomials $\bar{u}_1^{k_1} \cdots \bar{u}_{n-1}^{k_{n-1}} \bar{z}_1^{m_1} \cdots \bar{z}_{t-1}^{m_{t-1}}$, $0 \le k_i < l, 0 \le m_i < 2$. We then obtain a contradiction in the same way as at the end of Step 2.

Step 5. Z/(d) is an integral domain.

Since $\overline{Z} = \overline{B}(\mathbb{C})[\overline{\Delta}_1^{-1}, \dots, \overline{\Delta}_{n-1}^{-1}]$ and the $\overline{\Delta}_i$ are non-zero in $\overline{A}(\mathbb{C}) \cong \mathbb{C}[SL_n]/(d')$ by Lemma 2, this follows from Step 4. \Box

Remark. To attempt a proof for arbitrary odd l > 1 I have tried the filtration with $\deg(\xi_{ij}) = 2l$, $\deg(z_i) = li$ and $\deg(u_i) = 2i$. But the main problem with this filtration is that it does not simplify the relations $s_i = f_i(u_1, \dots, u_{n-1})$ enough.

References

- A. Braun, C.R. Hajarnavis, Smooth polynomial identity algebras with almost factorial centers, Warwick preprint: 7/2003.
- [2] N. Bourbaki, Algèbre, Chapitres 1, 2 et 3, Hermann, Paris, 1970.
- [3] N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.
- [4] J.-M. Bois, Corps enveloppantes des algèbres de Lie en dimension infinie et en charactéristique positive, Thesis, University of Rheims, 2004.

- [5] D. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, second ed., Undergrad. Texts Math., Springer-Verlag, New York, 1997.
- [6] P.M. Cohn, Algebra, vol. 2, second ed., Wiley, Chichester, 1982.
- [7] C. de Concini, V.G. Kac, Representations of quantum groups at roots of 1, in: Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Paris, 1989, in: Progr. Math., vol. 92, Birkhäuser, Boston, MA, 1990, pp. 471–506.
- [8] C. de Concini, V.G. Kac, C. Procesi, Quantum coadjoint action, J. Amer. Math. Soc. 5 (1) (1992) 151-189.
- [9] C. de Concini, C. Procesi, Quantum groups, in: *D*-Modules, Representation Theory, and Quantum Groups, Venice, 1992, in: Lecture Notes in Math., vol. 1565, Springer-Verlag, Berlin, 1993, pp. 31–140.
- [10] J. Dixmier, Sur les algèbres enveloppantes de $\mathfrak{sl}(n, \mathbb{C})$ et $\mathfrak{af}(n, \mathbb{C})$, Bull. Sci. Math. (2) 100 (1) (1976) 57–95.
- [11] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Grad. Texts in Math., vol. 150, Springer-Verlag, New York, 1995.
- [12] F. Fauquant-Millet, Sur une algèbre parabolique P de $\check{U}_q(\mathfrak{sl}_{n+1})$ et ses semi-invariants par l'action adjointe de P, Bull. Sci. Math. 122 (7) (1998) 495–519.
- [13] F. Fauquant-Millet, Quantification de la localisation de Dixmier de $U(\mathfrak{sl}_{n+1}(\mathfrak{C}))$, J. Algebra 218 (1) (1999) 93–116.
- [14] Ya.S. Krylyuk, The Zassenhaus variety of a classical semi-simple Lie algebra in finite characteristic, Mat. Sb. (N.S.) 130(172) (4) (1986) 475–487 (in Russian); English translation: Math. USSR Sb. 58 (2) (1987) 477–490.
- [15] V.L. Popov, Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974) 294–322 (in Russian); English translation: Math. USSR Izv. 8 (2) (1974) 301–327.
- [16] A.A. Premet, R.H. Tange, Zassenhaus varieties of general linear Lie algebras, J. Algebra 294 (1) (2005) 177–195.
- [17] R. Steinberg, Regular elements of semi-simple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965) 49–80.