JOURNAL OF
Algebra

The centre of quantum $\mathfrak{s l}_{n}$ at a root of unity

Rudolf Tange
School of Mathematics, University of Southampton, Highfield, SO17 1BJ, UK

Received 5 May 2005
Available online 13 February 2006
Communicated by Corrado de Concini

Abstract

Summary It is proved that the centre Z of the simply connected quantised universal enveloping algebra over $\mathbb{C}, U_{\varepsilon, P}\left(\mathfrak{s l}_{n}\right), \varepsilon$ a primitive l th root of unity, l an odd integer >1, has a rational field of fractions. Furthermore it is proved that if l is a power of an odd prime, Z is a unique factorisation domain. © 2005 Elsevier Inc. All rights reserved.

Introduction

In [8] de Concini, Kac and Procesi introduced the simply connected quantised universal enveloping algebra $U=U_{\varepsilon, P}(\mathfrak{g})$ over \mathbb{C} at a primitive l th root of unity ε associated to a simple finite-dimensional complex Lie algebra \mathfrak{g}. The importance of the study of the centre Z of U and its spectrum $\operatorname{Maxspec}(Z)$ is pointed out in $[7,8]$.

In this article we consider the following two conjectures concerning the centre Z of U in the case $\mathfrak{g}=\mathfrak{s l}_{n}$:
(1) Z has a rational field of fractions.
(2) Z is a unique factorisation domain (UFD).

The same conjectures can be made for the universal enveloping algebra $U(\mathfrak{g})$ of the Lie algebra \mathfrak{g} of a reductive group over an algebraically closed field of positive characteristic.

[^0]In [16] these conjectures were proved for $\mathfrak{g}=\mathfrak{g l}_{n}$ and for $\mathfrak{g}=\mathfrak{s l}_{n}$ under the condition that n is non-zero in the field.

The second conjecture was made by Braun and Hajarnavis in [1] for the universal enveloping algebra $U(\mathfrak{g})$ and suggested for $U=U_{\varepsilon, P}(\mathfrak{g})$. There it was also proved that Z is locally a UFD. In Section 3 below, this conjecture is proved for $\mathfrak{s l}_{n}$ under the condition that l is a power of a prime $(\neq 2)$. The auxiliary results and Step 1 of the proof of Theorem 4, however, hold without extra assumptions on l.

The first conjecture was posed as a question by J. Alev for the universal enveloping algebra $U(\mathfrak{g})$. It can be considered as a first step towards a proof of a version of the Gelfand-Kirillov conjecture for U. Indeed the Gelfand-Kirillov conjecture for $\mathfrak{g l}_{n}$ and $\mathfrak{s l}_{n}$ in positive characteristic ${ }^{1}$ was proved recently by J.-M. Bois in his PhD thesis [4] using results in [16] on the centres of their universal enveloping algebras (for $\mathfrak{s l}_{n}$ it was required that $n \neq 0$ in the field). It should be noted that the Gelfand-Kirillov conjecture for $U(\mathfrak{g})$ in characteristic 0 (and in positive characteristic) is still open for \mathfrak{g} not of type A.

As in [16], a certain semi-invariant d for a maximal parabolic subgroup of GL_{n} will play an important rôle. Later we learned that (a version of) this semi-invariant already appeared before in the literature, see [10]. For quantum versions, see [12,13].

1. Preliminaries

In this section we recall some basic results, mostly from [8], that are needed to prove the main results (Theorems 3 and 4) of this article. Short proofs are added in case the results are not explicitly stated in [8].

1.1. Elementary definitions

Let \mathfrak{g} be a simple finite-dimensional Lie algebra over \mathbb{C} with Cartan subalgebra \mathfrak{h}, let Φ be its root system relative to \mathfrak{h}, let $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ be a basis of Φ and let $(\cdot \mid \cdot)$ be the symmetric bilinear form on \mathfrak{h}^{*} which is invariant for the Weyl group W and satisfies $(\alpha \mid \alpha)=2$ for all short roots α. Put $d_{i}=\left(\alpha_{i} \mid \alpha_{i}\right) / 2$. The root lattice and the weight lattice of Φ are denoted by respectively Q and P. Note that $(\cdot \mid \cdot)$ is integral on $Q \times P$.

Mostly we will be in the situation where $\mathfrak{g}=\mathfrak{s l}_{n}$. In this case $r=n-1$ and all the d_{i} are equal to 1 . We then take \mathfrak{h} the subalgebra that consists of the diagonal matrices in $\mathfrak{s l}_{n}$ and we take $\alpha_{i}=A \mapsto A_{i i}-A_{i+1 i+1}: \mathfrak{h} \rightarrow \mathbb{C}$.

Let l be an odd integer >1 and coprime to all the d_{i}, let ε be a primitive l th root of unity and let Λ be a lattice between Q and P. Let $U=U_{\varepsilon, \Lambda}(\mathfrak{g})$ be the quantised universal enveloping algebra of \mathfrak{g} at the root of unity ε defined in [8] and denote the centre of U by Z. Since U has no zero divisors (see [7,1.6-1.8]), Z is an integral domain. Let U^{+}, U^{-}, U^{0} be the subalgebras of U generated by respectively the E_{i}, the F_{i} and the K_{λ} with $\lambda \in \Lambda$. Then the multiplication $U^{-} \otimes U^{0} \otimes U^{+} \rightarrow U$ is an isomorphism of vector spaces. We

[^1]identify U^{0} with the group algebra $\mathbb{C} \Lambda$ of Λ. Note that W acts on U^{0}, since it acts on Λ. Let T be the complex torus $\operatorname{Hom}\left(\Lambda, \mathbb{C}^{\times}\right)$. Then T can be identified with $\operatorname{Maxspec}\left(U^{0}\right)=$ $\operatorname{Hom}_{\mathbb{C}-\operatorname{Alg}}\left(U^{0}, \mathbb{C}\right)$ and for the action of T on $U^{0}=\mathbb{C}[T]$ by translation we have $t \cdot K_{\lambda}=$ $t(\lambda) K_{\lambda}$.

The braid group \mathcal{B} acts on U by automorphisms. See [8, 0.4]. The subalgebra Z_{0} of U is defined as the smallest \mathcal{B}-stable subalgebra containing the elements $K_{\lambda}^{l}, \lambda \in \Lambda$, and $E_{i}^{l}, F_{i}^{l}, i=1, \ldots, r$. We have $Z_{0} \subseteq Z$. Put $z_{\lambda}=K_{\lambda}^{l}$ and let Z_{0}^{0} be the subalgebra of Z_{0} spanned by the z_{λ}. Then the identification of U^{0} with $\mathbb{C} \Lambda$ gives an identification of Z_{0}^{0} with $\mathbb{C l} \Lambda$. If we replace K_{λ} by z_{λ} in foregoing remarks, then we obtain an identification of T with $\operatorname{Maxspec}\left(Z_{0}^{0}\right)$. Put $Z_{0}^{ \pm}=Z_{0} \cap U^{ \pm}$. Then the multiplication $Z_{0}^{-} \otimes Z_{0}^{0} \otimes Z_{0}^{+} \rightarrow Z_{0}$ is an isomorphism (of algebras). See e.g. [7, 3.3].

1.2. The Harish-Chandra centre Z_{1} and the quantum restriction theorem

Let Q^{\vee} be the dual root lattice, that is, the \mathbb{Z}-span of the dual root system Φ^{\vee}. We have $Q^{\vee} \cong P^{*} \hookrightarrow \Lambda^{*}$. Denote the image of Q^{\vee} under the homomorphism $f \mapsto(\lambda \mapsto$ $\left.(-1)^{f(\lambda)}\right): \Lambda^{*} \rightarrow T$ by Q_{2}^{\vee}. Then the elements $\neq 1$ of Q_{2}^{\vee} are of order 2 and $U^{0} Q_{2}^{\vee}=$ $\mathbb{C}(\Lambda \cap 2 P)$. Since Q_{2}^{\vee} is W-stable, we can form the semi-direct product $\tilde{W}=W \ltimes Q_{2}^{\vee}$ and then $U^{0 \tilde{W}}=(\mathbb{C}(\Lambda \cap 2 P))^{W}$.

Let $h^{\prime}: U=U^{-} \otimes U^{0} \otimes U^{+} \rightarrow U^{0}$ be the linear map taking $x \otimes u \otimes y$ to $\epsilon_{U}(x) u \epsilon_{U}(y)$, where ϵ_{U} is the counit of U. Then h^{\prime} is a projection of U onto U^{0}. Furthermore $h^{\prime}\left(Z_{0}\right)=$ $Z_{0}^{0}=\mathbb{C l} \Lambda$ and $\left.h^{\prime}\right|_{Z_{0}}: Z_{0} \rightarrow Z_{0}^{0}$ has a similar description as h^{\prime} and is a homomorphism of algebras. Define the shift automorphism γ of $U^{0} Q_{2}^{\vee}$ by setting $\gamma\left(K_{\lambda}\right)=\varepsilon^{(\rho \mid \lambda)} K_{\lambda}$ for $\lambda \in \Lambda \cap 2 P$. Here ρ is the half sum of the positive roots. Note that $\gamma=$ id on $Z_{0}^{0 Q_{2}^{\vee}}=$ $\mathbb{C l}(\Lambda \cap 2 P)$. In [8, p. 174] and [7, §2], there was constructed an injective homomorphism $\bar{h}: U^{0 \tilde{W}} \rightarrow Z$, whose image is denoted by Z_{1}, such that $h^{\prime}\left(Z_{1}\right) \subseteq U^{0 Q_{2}^{\vee}}$ and the inverse

$$
h: Z_{1} \xrightarrow{\sim} U^{0 \tilde{W}}
$$

of \bar{h} is equal to $\gamma^{-1} \circ h^{\prime}$. Note that $h=h^{\prime}$ on $Z_{0} \cap Z_{1}$ and that $\left.h^{\prime}\right|_{Z_{1}}$ is a homomorphism of algebras. Since $\operatorname{Ker}\left(h^{\prime}\right)$ is stable under left and right multiplication by elements of U^{0} and under multiplication by elements of Z, we can conclude that the restriction of h^{\prime} to the subalgebra generated by Z_{0} and Z_{1} is a homomorphism of algebras.

From now on we assume that $\Lambda=P$. Let G be the simply connected almost simple complex algebraic group with Lie algebra \mathfrak{g} and let T be a maximal torus of G. We identify Φ and W with the root system and the Weyl group of G relative to T. Note that the character group $X(T)$ of T is equal to P. In case $\mathfrak{g}=\mathfrak{s l}_{n}$ we take T the subgroup of diagonal matrices in SL_{n}.

1.3. Generators for $\mathbb{C}[G]^{G}$ and Z_{1}

We denote the fundamental weights corresponding to the basis $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ by $\varpi_{1}, \ldots, \varpi_{r}$. As is well known, they form a basis of P. Let $\mathbb{C}[G]$ be the algebra of regular functions on G. Then the restriction homomorphism $\mathbb{C}[G] \rightarrow \mathbb{C}[T]=\mathbb{C} P$ induces
an isomorphism $\mathbb{C}[G]^{G} \xrightarrow{\sim} \mathbb{C}[T]^{W}=(\mathbb{C} P)^{W}$, see $[17, \S 6]$. For $\lambda \in P$ denote the basis element of $\mathbb{C} P$ corresponding to λ by $e(\lambda)$, denote the W-orbit of λ by $W \cdot \lambda$ and put $\operatorname{sym}(\lambda)=\sum_{\mu \in W \cdot \lambda} e(\mu)$. Then the $\operatorname{sym}\left(\varpi_{i}\right), i=1, \ldots, r$, are algebraically independent generators of $(\mathbb{C} P)^{W}$. See [3, No. VI.3.4, Théorème 1].

For a field K, we denote the vector space of all $n \times n$ matrices over K by $\mathrm{Mat}_{n}=$ $\operatorname{Mat}_{n}(K)$. Now assume that $K=\mathbb{C}$. In this section we denote the restriction to SL_{n} of the standard coordinate functionals on Mat_{n} by $\xi_{i j}, 1 \leqslant i, j \leqslant n$. Furthermore, for $i \in$ $\{1, \ldots, n-1\}, s_{i} \in \mathbb{C}\left[\mathrm{SL}_{n}\right]$ is defined by $s_{i}(A)=\operatorname{tr}\left(\bigwedge^{i} A\right)$, where $\bigwedge^{i} A$ denotes the i th exterior power of A and tr denotes the trace. Then $\varpi_{i}=\left.\left(\xi_{11} \cdots \xi_{i i}\right)\right|_{T}$ and therefore

$$
\begin{equation*}
\operatorname{sym}\left(\varpi_{i}\right)=\left.s_{i}\right|_{T}, \tag{*}
\end{equation*}
$$

the i th elementary symmetric function in the $\left.\xi_{j j}\right|_{T}$. See $[16,2.4]$.
In the general case we use the restriction theorem for $\mathbb{C}[G]$ and define $s_{i} \in \mathbb{C}[G]^{G}$ by $(*)$. So then s_{1}, \ldots, s_{r} are algebraically independent generators of $\mathbb{C}[G]^{G}$.

Identifying U^{0} and $\mathbb{C} P$, we have $U^{0 \tilde{W}}=(\mathbb{C} 2 P)^{W}$. Put $u_{i}=\bar{h}\left(\operatorname{sym}\left(2 \varpi_{i}\right)\right)$. Then $h\left(u_{i}\right)=\operatorname{sym}\left(2 \varpi_{i}\right)$ and u_{1}, \ldots, u_{r} are algebraically independent generators of Z_{1}.

1.4. The cover π and the intersection $Z_{0} \cap Z_{1}$

Let Φ^{+}be the set of positive roots corresponding to the basis $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ of Φ and let U_{+}respectively U_{-}be the maximal unipotent subgroup of G corresponding to Φ^{+} respectively $-\Phi^{+}$. If $\mathfrak{g}=\mathfrak{s l}_{n}$, then U_{+}and U_{-}consist of the upper respectively lower triangular matrices in SL_{n} with ones on the diagonal. Put $\mathcal{O}=U_{-} T U_{+}$. Then \mathcal{O} is a nonempty open and therefore dense subset of G. Furthermore, the group multiplication defines an isomorphism $U_{-} \times T \times U_{+} \xrightarrow{\sim} \mathcal{O}$ of varieties. Put $\Omega=\operatorname{Maxspec}\left(Z_{0}\right)$.

In $\left[7\right.$, (3.4)-(3.6)] there was constructed a group \tilde{G} of automorphisms of $\hat{U}=\hat{Z}_{0} \otimes_{Z_{0}} U$, where \hat{Z}_{0} denotes the algebra of holomorphic functions on the complex analytic variety Ω. The group \tilde{G} leaves \hat{Z}_{0} and $\hat{Z}=\hat{Z}_{0} \otimes_{Z_{0}} Z$ stable. In particular it acts by automorphisms on the complex analytic variety Ω. In [8] this action is called the "quantum coadjoint action."

In $[8, \S 4]$ there was constructed an unramified cover $\pi: \Omega \rightarrow \mathcal{O}$ of degree 2^{r}. I give a short description of the construction of π. Put $\Omega^{ \pm}=\operatorname{Maxspec}\left(Z_{0}^{ \pm}\right)$. Then we have $\Omega=$ $\Omega^{-} \times T \times \Omega^{+}$. Now $Z: \Omega \rightarrow T$ is defined as the projection on $T, X: \Omega \rightarrow U_{+}$and $Y: \Omega \rightarrow U_{-}$as the projection on $\Omega^{ \pm}$followed by some isomorphism $\Omega^{ \pm} \xrightarrow{\sim} U_{ \pm}$and π is defined as $Y Z^{2} X$ (multiplication in G). ${ }^{2}$ This means: $\pi(x)=Y(x) Z(x)^{2} X(x)$.

The following theorem says something about how \tilde{G} and π are related to the "HarishChandra centre" Z_{1} and the conjugation action of G on $\mathbb{C}[G]$. For more precise statements see [8, 5.4, 5.5 and §6].

Theorem 1. [8, Proposition 6.3, Theorem 6.7] Consider π as a morphism to G. Then the comorphism $\pi^{\mathrm{co}}: \mathbb{C}[G] \rightarrow Z_{0}$ is injective and the following holds:

[^2](i) $Z^{\tilde{G}}=Z_{1} \cdot{ }^{3}$
(ii) $\pi^{\text {co }}$ induces an isomorphism $\mathbb{C}[G]^{G} \xrightarrow{\sim} Z_{0}^{\tilde{G}}=Z_{0} \cap Z_{1}$.
(iii) The monomorphism $(\mathbb{C} P)^{W} \xrightarrow{\sim}(\mathbb{C} P)^{W}$ obtained by combining the isomorphism in (ii) with the restriction homomorphism $\mathbb{C}[G] \rightarrow \mathbb{C}[T]=\mathbb{C} P$ and $h: Z_{1} \rightarrow U^{0}=\mathbb{C} P$, is given by $x \mapsto 2 l x: P \rightarrow P$. In particular $h\left(Z_{0} \cap Z_{1}\right)=(\mathbb{C} 2 l P)^{W}$.

I will give the proof of (iii). If we identify Z_{0}^{0} with $\mathbb{C}[T]$, then the homomorphism $\left.h^{\prime}\right|_{Z_{0}}: Z_{0} \rightarrow Z_{0}^{0}$ is the comorphism of a natural embedding $T \hookrightarrow \Omega$. Now we have a commutative diagram

Expressed in terms of the comorphisms this reads: $(x \mapsto 2 x) \circ \operatorname{res}_{G, T}=\operatorname{res}_{\Omega, T} \circ \pi^{\mathrm{co}}$, where $\operatorname{res}_{G, T}$ and res $\Omega_{\Omega, T}$ are the restrictions to T and the comorphism of the morphism between the tori is denoted by its restrictions to the character groups. Now we identify U^{0} with $\mathbb{C}[T]$. Composing both sides on the left with $x \mapsto l x$ and using $(x \mapsto l x) \circ \operatorname{res}_{\Omega, T}=$ $\left.h^{\prime}\right|_{Z_{0}}: Z_{0} \rightarrow U^{0}=\mathbb{C} P$ we obtain $(x \mapsto 2 l x) \circ \operatorname{res}_{G, T}=h^{\prime} \circ \pi^{\mathrm{co}}$. If we restrict both sides of this equality to $\mathbb{C}[G]^{G}$, then we can replace h^{\prime} by h and we obtain the assertion.

1.5. Z_{0} and Z_{1} generate Z

Theorem 2. [8, Proposition 6.4, Theorem 6.4] Let u_{1}, \ldots, u_{r} be the elements of Z_{1} defined in Subsection 1.3. Then the following holds:
(i) The multiplication $Z_{1} \otimes_{Z_{0} \cap Z_{1}} Z_{0} \rightarrow Z$ is an isomorphism of algebras.
(ii) Z is a free Z_{0}-module of rank l^{r} with the restricted monomials $u_{1}^{k_{1}} \cdots u_{r}^{k_{r}}, 0 \leqslant k_{i}<l$, as a basis.

I give a proof of (ii). In [8, Proposition 6.4] it is proved that $(\mathbb{C} P)^{W}$ is a free $(\mathbb{C l P})^{W}$ module of rank l^{r} with the restricted monomials (exponents $<l$) in the $\operatorname{sym}\left(\varpi_{i}\right)$ as a basis. The same holds then of course for $(\mathbb{C} 2 P)^{W},(\mathbb{C} 2 l P)^{W}$ and the $\operatorname{sym}\left(2 \varpi_{i}\right)$. But then the same holds for $Z_{1}, Z_{0} \cap Z_{1}$ and the u_{i} by (iii) of Theorem 1. So the result follows from (i).

Recall that $\Omega=\Omega^{-} \times T \times \Omega^{+}$and that $\Omega^{ \pm} \cong U_{ \pm}$. So Z_{0} is a polynomial algebra in $\operatorname{dim}(\mathfrak{g})$ variables with r variables inverted. In particular its Krull dimension (which coincides with the transcendence degree of its field of fractions) is $\operatorname{dim}(\mathfrak{g})$. The same holds then for Z, since it is a finitely generated Z_{0}-module.

[^3]Let Z_{0}^{\prime} be a subalgebra of Z_{0} containing $Z_{1} \cap Z_{0}$. Then the multiplication $Z_{1} \otimes_{Z_{0} \cap Z_{1}}$ $Z_{0}^{\prime} \rightarrow Z_{0}^{\prime} Z_{1}$ is an isomorphism of algebras by the above theorem. This gives us a way to determine generators and relations for $Z_{0}^{\prime} Z_{1}$: Let s_{1}, \ldots, s_{r} be the generators of $\mathbb{C}[G]^{G}$ defined in Subsection 1.3. Then $\pi^{\mathrm{co}}\left(s_{1}\right), \ldots, \pi^{\mathrm{co}}\left(s_{r}\right)$ are generators of $Z_{0} \cap Z_{1}=Z_{0}^{\prime} \cap Z_{1}$ by Theorem 1 (ii). Now assume that we have generators and relations for Z_{0}^{\prime}. We use for Z_{1} the generators u_{1}, \ldots, u_{r} defined in Subsection 1.3. For each $i \in\{1, \ldots, r\}$ we can express $\pi^{\mathrm{co}}\left(s_{i}\right)$ as a polynomial g_{i} in the generators of Z_{0}^{\prime} and as a polynomial f_{i} in the u_{j}. Then the generators and relations for Z_{0}^{\prime} together with the u_{i} and the relations $f_{i}=g_{i}$ form a presentation of $Z_{0}^{\prime} Z_{1}$. ${ }^{4}$

The f_{i} can be determined as follows. Write $\operatorname{sym}\left(l \varpi_{i}\right)$ as a polynomial f_{i} in the $\operatorname{sym}\left(\varpi_{j}\right)$. Then $\operatorname{sym}\left(2 l \varpi_{i}\right)$ is the same polynomial in the $\operatorname{sym}\left(2 \varpi_{j}\right)$ and $\pi^{\mathrm{co}}\left(s_{i}\right)=$ $f_{i}\left(u_{1}, \ldots, u_{r}\right)$ by Theorem 1 (iii).

Note that $\pi^{\mathrm{co}}(\mathbb{C}[\mathcal{O}])=Z_{0}^{-} \mathbb{C}(2 l P) Z_{0}^{+}$and that $Z_{0}=\pi^{\mathrm{co}}(\mathbb{C}[\mathcal{O}])\left[z_{\omega_{1}}, \ldots, z_{\sigma_{r}}\right]$.
Now assume that $G=\mathrm{SL}_{n}$. For $f \in \mathbb{C}\left[\mathrm{SL}_{n}\right]$ denote $f \circ \pi$ by \tilde{f} and put $\tilde{Z}_{0}=$ $\pi^{\mathrm{co}}\left(\mathbb{C}\left[\mathrm{SL}_{n}\right]\right)$. Then \tilde{Z}_{0} is generated by the $\tilde{\xi}_{i j}$; it is a copy of $\mathbb{C}\left[\mathrm{SL}_{n}\right]$ in Z_{0}. Now \mathcal{O} consists of the matrices $A \in \mathrm{SL}_{n}$ that have an LU-decomposition (without row permutations), that is, whose principal minors $\Delta_{1}(A), \ldots, \Delta_{n-1}(A)$ are non-zero. So $\mathbb{C}[\mathcal{O}]=$ $\mathbb{C}\left[\mathrm{SL}_{n}\right]\left[\Delta_{1}^{-1}, \ldots, \Delta_{n-1}^{-1}\right], \pi^{\mathrm{co}}(\mathbb{C}[\mathcal{O}])=\tilde{Z}_{0}\left[\tilde{\Delta}_{1}^{-1}, \ldots, \tilde{\Delta}_{n-1}^{-1}\right]$ and

$$
Z_{0}=\tilde{Z}_{0}\left[z_{\sigma_{1}}, \ldots, z_{\varpi_{n-1}}\right]\left[\tilde{\Delta}_{1}^{-1}, \ldots, \tilde{\Delta}_{n-1}^{-1}\right] .
$$

Let $\operatorname{pr}_{\mathcal{O}, T}$ be the projection of \mathcal{O} on T. An easy computation shows that $\left.\Delta_{i}\right|_{\mathcal{O}}=$ $\left(\xi_{11} \cdots \xi_{i i}\right) \circ \operatorname{pr}_{\mathcal{O}, T}=\varpi_{i} \circ \operatorname{pr}_{\mathcal{O}, T}$ for $i=1, \ldots, n-1 . .^{5}$ So $\tilde{\Delta}_{i}=\varpi_{i} \circ \operatorname{pr}_{\mathcal{O}, T} \circ \pi=\varpi_{i} \circ$ $\left(t \mapsto t^{2}\right) \circ \operatorname{pr}_{\Omega, T}=2 \varpi_{i} \circ \operatorname{pr}_{\Omega, T}=z_{\varpi_{i}}^{2}$. In Subsection 3.3 we will determine generators and relations for $Z_{0}^{\prime} Z_{1}$, where $Z_{0}^{\prime}=\tilde{Z}_{0}\left[z_{\sigma_{1}}, \ldots, z_{\sigma_{n-1}}\right]$ using the method mentioned above.

2. Rationality

We use the notation of Section 1 with the following modifications. The functions $\xi_{i j}, 1 \leqslant i, j \leqslant n$, now denote the standard coordinate functionals on Mat_{n} and for $i \in\{1, \ldots, n\}, s_{i} \in K\left[\mathrm{Mat}_{n}\right]$ is defined by $s_{i}(A)=\operatorname{tr}\left(\bigwedge^{i} A\right)$ for $A \in$ Mat $_{n}$. Then $\operatorname{det}(x \operatorname{id}-A)=x^{n}+\sum_{i=1}^{n}(-1)^{i} s_{i}(A) x^{n-i}$. This notation is in accordance with [16].

For $f \in \mathbb{C}\left[\mathrm{Mat}_{n}\right]$ we denote its restriction to SL_{n} by f^{\prime} and we denote $\pi^{\mathrm{co}}\left(f^{\prime}\right)$ by \tilde{f}. So now $s_{1}^{\prime}, \ldots, s_{n-1}^{\prime}$ and $\xi_{i j}^{\prime}$ are the functions s_{1}, \ldots, s_{n-1} and $\xi_{i j}$ of Subsection 1.3 and the $\tilde{\xi}_{i j}$ are the same.

To prove the theorem below we need to look at the expressions of the functions s_{i} in terms of the $\xi_{i j}$. We use that those equations are linear in $\xi_{1 n}, \xi_{2 n}, \ldots, \xi_{n n}$. The treatment

[^4]is completely analogous to that in $[16,4.1]$ (we use the same symbols R, M, d and $x_{\mathbf{a}}$) to which we refer for more explanation. Let R be the \mathbb{Z}-subalgebra of $\mathbb{C}\left[\mathrm{Mat}_{n}\right]$ generated by all $\xi_{i j}$ with $j \neq n$.

Let $\partial_{i j}$ denote differentiation with respect to the variable $\xi_{i j}$ and set

$$
M=\left[\begin{array}{cccc}
\partial_{1 n}\left(s_{1}\right) & \partial_{2 n}\left(s_{1}\right) & \ldots & \partial_{n n}\left(s_{1}\right) \\
\partial_{1 n}\left(s_{2}\right) & \partial_{2 n}\left(s_{2}\right) & \ldots & \partial_{n n}\left(s_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\partial_{1 n}\left(s_{n}\right) & \partial_{2 n}\left(s_{n}\right) & \ldots & \partial_{n n}\left(s_{n}\right)
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{c}
\xi_{1 n} \\
\xi_{2 n} \\
\vdots \\
\xi_{n n}
\end{array}\right], \quad \mathbf{s}=\left[\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{n}
\end{array}\right] .
$$

Then the matrix M has entries in R and the following vector equation holds:

$$
\begin{equation*}
M \cdot \mathbf{c}=\mathbf{s}+\mathbf{r}, \quad \text { where } \mathbf{r} \in R^{n} . \tag{1}
\end{equation*}
$$

We denote the determinant of M by d. For $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in K^{n}$ we set

$$
x_{\mathbf{a}}=\left[\begin{array}{ccccc}
0 & \cdots & 0 & 0 & a_{n} \\
1 & \cdots & 0 & 0 & a_{n-1} \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \cdots & 1 & 0 & a_{2} \\
0 & \cdots & 0 & 1 & a_{1}
\end{array}\right]
$$

Then the minimal polynomial of $x_{\mathbf{a}}$ equals $x^{n}-\sum_{i=1}^{n} a_{i} x^{n-i}, \operatorname{det}\left(x_{\mathbf{a}}\right)=(-1)^{n-1} a_{n}$ and $d\left(x_{\mathbf{a}}\right)=1$ (compare Lemma 3 in [16]).

Theorem 3. Z has a rational field of fractions.

Proof. Denote the field of fractions of Z by $Q(Z)$. From Subsection 1.5 it is clear that $Q(Z)$ has transcendence degree $\operatorname{dim}\left(\mathfrak{s l}_{n}\right)=n^{2}-1$ over \mathbb{C} and that it is generated as a field by the $n^{2}+2(n-1)$ variables $\tilde{\xi}_{i j}, u_{1}, \ldots, u_{n-1}$ and $z_{\sigma_{1}}, \ldots, z_{\sigma_{n-1}}$. To prove the assertion we will show that $Q(Z)$ is generated by the $n^{2}-1$ elements $\tilde{\xi}_{i j}, i \neq j, j \neq n, u_{1}, \ldots, u_{n-1}$ and $z_{\omega_{1}}, \ldots, z_{\omega_{n-1}}$. We will first eliminate the n generators $\tilde{\xi}_{1 n}, \ldots, \tilde{\xi}_{n n}$ and then the $n-1$ generators $\tilde{\xi}_{11}, \ldots, \tilde{\xi}_{n-1 n-1}$.

Applying the homomorphism $f \mapsto \tilde{f}=\pi^{\mathrm{co}} \circ\left(f \mapsto f^{\prime}\right): \mathbb{C}\left[\mathrm{Mat}_{n}\right] \rightarrow Z_{0}$ to both sides of (1) we obtain the following equations in the $\tilde{\xi}_{i j}$ and $\tilde{s}_{1}, \ldots, \tilde{s}_{n-1}$

$$
\begin{equation*}
\tilde{M} \cdot \tilde{\mathbf{c}}=\tilde{\mathbf{s}}+\tilde{\mathbf{r}}, \quad \text { where } \tilde{\mathbf{r}} \in \tilde{R}^{n} \tag{2}
\end{equation*}
$$

Here $\tilde{M}, \tilde{\mathbf{c}}, \tilde{\mathbf{s}}, \tilde{\mathbf{r}}$ have the obvious meaning, except that we put the last component of $\tilde{\mathbf{s}}$ and $\tilde{\mathbf{r}}$ equal to 0 respectively 1 , and \tilde{R} is the \mathbb{Z}-subalgebra of Z_{0} generated by all $\tilde{\xi}_{i j}$ with $j \neq n$. Choosing a such that $a_{n}=(-1)^{n-1}$ we have $x_{\mathbf{a}} \in \mathrm{SL}_{n}$. Since $d\left(x_{\mathbf{a}}\right)=1$, we have $d^{\prime} \neq 0$ and therefore $\operatorname{det}(\tilde{M})=\tilde{d} \neq 0$. Furthermore, for $i=1, \ldots, n-1,(\tilde{\mathbf{s}})_{i}=\tilde{s}_{i} \in Z_{0} \cap Z_{1}$ and Z_{1} is generated by u_{1}, \ldots, u_{n-1}. It follows that $\tilde{\xi}_{1 n}, \ldots, \tilde{\xi}_{n n}$ are in the subfield of $Q(Z)$ generated by the $\tilde{\xi}_{i j}$ with $j \neq n$ and u_{1}, \ldots, u_{n-1}.

Now we will eliminate the generators $\tilde{\xi}_{11}, \ldots, \tilde{\xi}_{n-1 n-1}$. We have

$$
z_{\varpi_{1}}^{2}=\tilde{\Delta}_{1}=\tilde{\xi}_{11}
$$

and for $k=2, \ldots, n-1$ we have, by the Laplace expansion rule,

$$
z_{\varpi_{k}}^{2}=\tilde{\Delta}_{k}=\tilde{\xi}_{k k} \tilde{\Delta}_{k-1}+t_{k}=\tilde{\xi}_{k k} z_{\varpi_{k-1}}^{2}+t_{k}
$$

where t_{k} is in the \mathbb{Z}-subalgebra of Z generated by the $\tilde{\xi}_{i j}$ with $i, j \leqslant k$ and $(i, j) \neq(k, k)$. It follows by induction on k that for $k=1, \ldots, n-1, \tilde{\xi}_{11}, \ldots, \tilde{\xi}_{k k}$ are in the subfield of $Q(Z)$ generated by the $z_{\varpi_{i}}$ with $i \leqslant k$ and the $\tilde{\xi}_{i j}$ with $i, j \leqslant k$ and $i \neq j$.

3. Unique factorisation

Recall that Nagata's lemma asserts the following: If x is a non-zero prime element of a Noetherian integral domain S such that $S\left[x^{-1}\right]$ is a UFD, then S is a UFD. See [11, Lemma 19.20]. Here an element is called prime if it generates a prime ideal. The non-zero prime elements of an integral domain are always irreducible and in a UFD the converse holds. In Theorem 4 we will see that, by Nagata's lemma, it suffices to show that the algebra $Z /(\tilde{d})$ is an integral domain in order to prove that Z is a UFD. To prove this we will show by induction that the two sequences of algebras (to be defined later):

$$
K\left[\mathrm{SL}_{n}\right] /\left(d^{\prime}\right) \cong \bar{A}(K)=\bar{B}_{0,0}(K) \subseteq \bar{B}_{0,1}(K) \subseteq \cdots \subseteq \bar{B}_{0, n-1}(K)=\bar{B}_{0}(K)
$$

in characteristic p and

$$
\bar{B}_{0}(\mathbb{C}) \subseteq \bar{B}_{1}(\mathbb{C}) \subseteq \cdots \subseteq \bar{B}_{n-1}(\mathbb{C})=\bar{B}(\mathbb{C})
$$

over \mathbb{C}, consist of integral domains. Lemma 2 is, among other things, needed to show that $\bar{A}(K) \cong K\left[\mathrm{SL}_{n}\right] /\left(d^{\prime}\right)$ is an integral domain. Lemmas 3 and 4 are needed to obtain bases over \mathbb{Z} (see Proposition $\overline{1}$), which, in turn, is needed to pass to fields of positive characteristic and to apply $\bmod p$ reduction (see Lemma 6).

3.1. The case $n=2$

In this subsection we show that the centre of $U_{\varepsilon, P}\left(\mathfrak{s l}_{2}\right)$ is always a UFD, without any extra assumptions on l. The standard generators for $U=U_{\varepsilon, P}\left(\mathfrak{s l}_{2}\right)$ are $E, F, K_{\bar{\sigma}}$ and $K_{\bar{\sigma}}^{-1}$. Put $K=K_{\alpha}=K_{\varpi}^{2}, z_{1}=z_{\sigma}=K_{\sigma}^{l}, z=z_{\alpha}=z_{1}^{2}=K^{l}$. Furthermore, following [8, 3.1], we put $c=\left(\varepsilon-\varepsilon^{-1}\right)^{l}, x=-c z^{-1} E^{l}, y=c F^{l}$. Then x, y and z_{1} are algebraically independent over \mathbb{C} and $Z_{0}=\mathbb{C}\left[x, y, z_{1}\right]\left[z_{1}^{-1}\right]$ (see $\left.[8, \S 3]\right)$.

We have $U^{0}=\mathbb{C}\left[K_{\varpi}, K_{\bar{\sigma}}^{-1}\right]$ and $U^{0 \tilde{W}}=\mathbb{C}\left[K, K^{-1}\right]^{W}=\mathbb{C}\left[K+K^{-1}\right]$. Identifying U^{0} and $\mathbb{C} P$, we have $\operatorname{sym}(2 \varpi)=K+K^{-1}$ and $\operatorname{sym}(2 l \varpi)=z+z^{-1}$. Put $u=\bar{h}(\operatorname{sym}(2 \varpi))$. By the restriction theorem for U, Z_{1} is a polynomial algebra in u. Denote the trace map on Mat_{2} by tr. Then $\left.\operatorname{tr}\right|_{T}=\operatorname{sym}(\varpi)$. By the restriction theorem for $\mathbb{C}[G]$ and Theorem 1(ii),
tr generates $Z_{0} \cap Z_{1}$. Furthermore $\tilde{\operatorname{tr}}=\bar{h}\left(z+z^{-1}\right)$, by Theorem 1(iii). Let $f \in \mathbb{C}[u]$ be the polynomial with $z+z^{-1}=f\left(K+K^{-1}\right)$. Then $\tilde{\mathrm{tr}}=f(u)$. From the formulas in [8, 5.2] it follows that $\tilde{\mathrm{tr}}=-z x y+z+z^{-1}$.

By the construction from Subsection 1.5 (we take $Z_{0}^{\prime}=Z_{0}$), Z is isomorphic to the quotient of the localised polynomial algebra $\mathbb{C}\left[x, y, z_{1}, u\right]\left[z_{1}^{-1}\right]$ by the ideal generated by $-z_{1}^{2} x y+z_{1}^{2}+z_{1}^{-2}-f(u)$. Clearly x, u and z_{1} generate the field of fractions of Z. In particular they are algebraically independent. So $Z\left[x^{-1}\right]$ is isomorphic to the localised polynomial algebra $\mathbb{C}\left[x, z_{1}, u\right]\left[z_{1}^{-1}, x^{-1}\right]$ and therefore a UFD. By Nagata's lemma it suffices to show that x is a prime element in Z. But $Z /(x)$ is isomorphic to the quotient of $\mathbb{C}\left[y, z_{1}, u\right]\left[z_{1}^{-1}\right]$ by the ideal generated by $z_{1}^{2}+z_{1}^{-2}-f(u)$. This ideal is also generated by $z_{1}^{4}-f(u) z_{1}^{2}+1$. So it suffices to show that $z_{1}^{4}-f(u) z_{1}^{2}+1$ is irreducible in $\mathbb{C}\left[y, z_{1}, u\right]\left[z_{1}^{-1}\right]$. From the fact that f is of odd degree $l>0$ (see e.g. Lemma 4 below), one easily deduces that $z_{1}^{4}-f(u) z_{1}^{2}+1$ is irreducible in $\mathbb{C}\left[z_{1}, u\right]$ and therefore also in $\mathbb{C}\left[y, z_{1}, u\right]$. Clearly $z_{1}^{4}-f(u) z_{1}^{2}+1$ is not invertible in $\mathbb{C}\left[y, z_{1}, u\right]\left[z_{1}^{-1}\right]$, so it is also irreducible in this ring.

3.2. SL_{n} and the function d

The next lemma is needed for the proof of Theorem 4. The Jacobian matrix below consists of the partial derivatives of the functions in question with respect to the variables $\xi_{i j}$.

Lemma 1. If $n \geqslant 3$, then there exists a matrix $A \in \operatorname{SL}_{n}(\mathbb{Z})$ such that $d(A)=0$ and such that some $2 n$-th order minor of the Jacobian matrix of $\left(s_{1}, \ldots, s_{n}, d, \Delta_{1}, \ldots, \Delta_{n-1}\right)$ is ± 1 at A.

Proof. The computations below are very similar to those in [16, Section 6]. We denote by \mathcal{X} the $(n \times n)$-matrix $\left(\xi_{i j}\right)$ and for an $(n \times n)$-matrix $B=\left(b_{i j}\right)$ and $\Lambda_{1}, \Lambda_{2} \subseteq\{1, \ldots, n\}$ we denote by $B_{\Lambda_{1}, \Lambda_{2}}$ the matrix $\left(b_{i j}\right)_{i \in \Lambda_{1}, j \in \Lambda_{2}}$, where the indices are taken in the natural order.

In the computations below we will use the following two facts:
For $\Lambda_{1}, \Lambda_{2} \subseteq\{1, \ldots, n\}$ with $\left|\Lambda_{1}\right|=\left|\Lambda_{2}\right|$ we have

$$
\partial_{i j}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda_{1}, \Lambda_{2}}\right)\right)= \begin{cases}(-1)^{n_{1}(i)+n_{2}(j)} \operatorname{det}\left(\mathcal{X}_{\Lambda_{1} \backslash\{i\}, \Lambda_{2} \backslash\{j\}}\right) & \text { when }(i, j) \in\left(\Lambda_{1} \times \Lambda_{2}\right), \\ 0 & \text { when }(i, j) \notin\left(\Lambda_{1} \times \Lambda_{2}\right),\end{cases}
$$

where $n_{1}(i)$ denotes the position in which i occurs in Λ_{1} and similarly for $n_{2}(j)$.
For $k \leqslant n$ we have $s_{k}=\sum_{\Lambda} \operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)$ where the sum ranges over all k-subsets Λ of $\{1, \ldots, n\}$.

Put $\alpha=((11),(22),(23), \ldots,(2 n-1),(n n),(n-1 n), \ldots,(2 n),(21),(12))$, and let α_{i} denote the i th component of α. We let A be the following $(n \times n)$-matrix:

$$
A=\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & (-1)^{n} \\
0 & 1 & 0 & \cdots & 0 & 0 \\
1 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

The columns of the Jacobian matrix are indexed by the pairs (i, j) with $1 \leqslant i, j \leqslant n$. Let M_{α} be the $2 n$-square submatrix of the Jacobian matrix consisting of the columns with indices from α. By permuting in A the first row to the last position and interchanging the first two columns, we see that $\operatorname{det}(A)=1$. We will show that $d(A)=0$ and that the minor $d_{\alpha}:=\operatorname{det}\left(M_{\alpha}\right)$ of the Jacobian matrix is ± 1 at A.

First we consider the $\Delta_{k}, k \in\{1, \ldots, n-1\}$. By inspecting the matrix A and using the fact that $\partial_{i j} \Delta_{k}=0$ if $i>k$ or $j>k$, we deduce the following facts:

$$
\begin{gathered}
\left(\partial_{2 i} \Delta_{k}\right)(A)=\left\{\begin{array}{ll}
\pm 1 & \text { if } i=k, \\
0 & \text { if } i>k,
\end{array} \quad \text { for } i, k \in\{1, \ldots, n-1\}, i \neq 1,\right. \\
\left(\partial_{11} \Delta_{1}\right)(A)=1, \\
\left(\partial_{12} \Delta_{k}\right)(A)=\left(\partial_{21} \Delta_{k}\right)(A)=0 \text { for all } k \in\{1, \ldots, n-1\},
\end{gathered}
$$

and

$$
\left(\partial_{i n} \Delta_{k}\right)(A)=0 \quad \text { for all } k \in\{1, \ldots, n-1\} \text { and all } i \in\{1, \ldots, n\}
$$

Now we consider the s_{k}. Let $i \in\{1, \ldots, n\}$ and let $\Lambda \subseteq\{1, \ldots, n\}$. Assume that $\partial_{\text {in }}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right)$ is non-zero at A. Then we have:

- $i, n \in \Lambda$;
- $j \in \Lambda \Rightarrow j-1 \in \Lambda$ for all j with $4 \leqslant j \leqslant n$ and $j \neq i$, since otherwise there would be a zero row (in $\left.\mathcal{X}_{\Lambda \backslash\{i\}, \Lambda \backslash\{n\}}(A)=A_{\Lambda \backslash\{i\}, \Lambda \backslash\{n\}}\right)$;
- $j \in \Lambda \Rightarrow j+1 \in \Lambda$ for all j with $3 \leqslant j \leqslant n-1$, since otherwise there would be a zero column.

First assume that $i \geqslant 3$ and that $|\Lambda| \leqslant n-i+1$. Then it follows that $\Lambda=\{i, \ldots, n\}$ and that $\partial_{\text {in }}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right)(A)= \pm 1$.

Next assume that $i=2$. Then it follows that either $\Lambda=\{2, \ldots, n\}$ or $\Lambda=\{1, \ldots, n\}$. In the first case we have $\partial_{\text {in }}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right)(A)=(-1)^{1+n-1}=(-1)^{n}$. In the second case we have $\partial_{\text {in }}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right)(A)=(-1)^{2+n}=(-1)^{n}$.

Now assume that $i=1$. Then it follows that either $\Lambda=\{1,3, \ldots, n\}$ or $\Lambda=\{1, \ldots, n\}$. In the first case we have $\partial_{\text {in }}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right)(A)=(-1)^{1+n-1}=(-1)^{n}$. In the second case we have $\partial_{i n}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right)(A)=(-1)^{1+n} \cdot(-1)=(-1)^{n}$.

So for $i, k \in\{1, \ldots, n\}$ we have:

$$
\left(\partial_{i n} s_{k}\right)(A)= \begin{cases} \pm 1 & \text { if } i \geqslant 3 \text { and } i+k=n+1, \\ 0 & \text { if } i \geqslant 3 \text { and } i+k<n+1, \\ (-1)^{n} & \text { if } i \in\{1,2\} \text { and } k \in\{n-1, n\}, \\ 0 & \text { if } i \in\{1,2\} \text { and } k<n-1\end{cases}
$$

It follows from the above equalities that in $M(A)$ the first 2 columns are equal. So $d(A)=$ $\operatorname{det}(M(A))=0$.

Let $\Lambda \subseteq\{1, \ldots, n\}$. Assume that $\partial_{12}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right)$ is non-zero at A. Then $1,2 \in \Lambda$ and the first row is zero. A contradiction. So $\partial_{12}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right)$ is zero at A. Now assume that $\partial_{21}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right)$ is non-zero at A. Then

- $1,2 \in \Lambda$;
- $n \in \Lambda$, since otherwise the first row would be zero;
- $j \in \Lambda \Rightarrow j-1 \in \Lambda$ for all j with $4 \leqslant j \leqslant n$, since otherwise there would be a zero row.

So $\Lambda=\{1, \ldots, n\}$ and $\partial_{\text {in }}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right)(A)= \pm 1$. Thus we have $\left(\partial_{12} s_{k}\right)(A)=0$ for all $k \in\{1, \ldots, n\}$ and

$$
\left(\partial_{21} s_{k}\right)(A)= \begin{cases} \pm 1 & \text { if } k=n \\ 0 & \text { otherwise }\end{cases}
$$

Finally, we consider the function d. Let $i \in\{1, \ldots, n\}$, let $\Lambda \subseteq\{1, \ldots, n\}$ and assume that $\partial_{12} \partial_{\text {in }}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right)$ is non-zero at A. Then we have:

- $1,2, i, n \in \Lambda$ and $i \neq 1$;
- $i=2$, since otherwise the first row would be zero;
- $j \in \Lambda \Rightarrow j-1 \in \Lambda$ for all j with $4 \leqslant j \leqslant n$, since otherwise there would be a zero row.

It follows that $i=2, \Lambda=\{1, \ldots, n\}$ and $\partial_{12} \partial_{\text {in }}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right)= \pm 1$. So for $i, k \in\{1, \ldots, n\}$ we have:

$$
\left(\partial_{12} \partial_{i n} s_{k}\right)(A)= \begin{cases} \pm 1 & \text { if }(i, k)=(2, n) \\ 0 & \text { if }(i, k) \neq(2, n)\end{cases}
$$

We have

$$
\begin{equation*}
d=\sum_{\pi \in \mathfrak{S}_{n}} \operatorname{sgn}(\pi) \partial_{\pi(1) n}\left(s_{1}\right) \cdots \partial_{\pi(n) n}\left(s_{n}\right) \tag{3}
\end{equation*}
$$

So, by the above,

$$
\left(\partial_{12} d\right)(A)=\left(\sum \operatorname{sgn}(\pi) \partial_{\pi(1) n}\left(s_{1}\right) \partial_{\pi(2) n}\left(s_{2}\right) \cdots \partial_{\pi(n-1) n}\left(s_{n-1}\right) \partial_{12} \partial_{2 n}\left(s_{n}\right)\right)(A)
$$

where the sum is over all $\pi \in \mathfrak{S}_{n}$ with $\pi(n)=2$. From what we know about the $\partial_{i n} s_{k}$ we deduce that the only permutation that survives in the above sum is given by $(\pi(1), \ldots, \pi(n))=(n, n-1, \ldots, 3,1,2)$ and that $\left(\partial_{12} d\right)(A)= \pm 1$.

If we permute the rows of $M_{\alpha}(A)$ in the order given by $\Delta_{1}, \ldots, \Delta_{n-1}, s_{1}, \ldots, s_{n}, d$ and take the columns in the order given by α, then the resulting matrix is lower triangular with ± 1 's on the diagonal. So we can conclude that $d_{\alpha}(A)=\operatorname{det}\left(M_{\alpha}(A)\right)= \pm 1$.

In the remainder of this subsection K denotes an algebraically closed field.

Lemma 2.

(i) d is an irreducible element of $K\left[\mathrm{Mat}_{n}\right]$.
(ii) $K\left[\mathrm{SL}_{n}\right]$ is a UFD.
(iii) The invertible elements of $K\left[\mathrm{SL}_{n}\right]$ are the non-zero scalars.
(iv) $d^{\prime}, \Delta_{1}^{\prime}, \ldots, \Delta_{n-1}^{\prime}$ is are mutually inequivalent irreducible elements of $K\left[\mathrm{SL}_{n}\right]$.

Proof. (i) The proof of this is completely analogous to that of Proposition 3 in [16]. One now has to work with the maximal parabolic subgroup P of GL_{n} that consists of the invertible matrices $\left(a_{i j}\right)$ with $a_{n i}=0$ for all $i<n$. The element d is then a semi-invariant of P with the weight det $\cdot \xi_{n n}^{-n}$ (the restriction of this weight to the maximal torus of diagonal matrices is $n \varpi_{n-1}$).
(ii) In fact it is well known that the algebra of regular functions $K[G]$ of a simply connected semi-simple algebraic group G over K is a UFD. See [15, the corollary to Proposition 1].
(iii) and (iv). Since Δ_{n-1}^{\prime} is not everywhere non-zero on SL_{n}, it is not invertible in $K\left[\mathrm{SL}_{n}\right]$. From the Laplace expansion for det with respect to the last row or the last column it is clear that we can eliminate $\xi_{n n}$ using the relation det $=1$, if we make Δ_{n-1} invertible. So we have an isomorphism $K\left[\mathrm{SL}_{n}\right]\left[\Delta_{n-1}^{\prime-1}\right] \cong K\left[\left(\xi_{i j}\right)_{(i, j) \neq(n, n)}\right]\left[\Delta_{n-1}^{-1}\right]$. It maps $d^{\prime}, \Delta_{1}^{\prime}, \ldots, \Delta_{n-1}^{\prime}$ to respectively $d, \Delta_{1}, \ldots, \Delta_{n-1}$, since these polynomials do not contain the variable $\xi_{n n}$. The invertible elements of $K\left[\left(\xi_{i j}\right)_{(i, j) \neq(n, n)}\right]\left[\Delta_{n-1}^{-1}\right]$ are the elements $\alpha \Delta_{n-1}^{k}, \alpha \in K \backslash\{0\}, k \in \mathbb{Z}$, since Δ_{n-1} is irreducible in $K\left[\left(\xi_{i j}\right)_{(i, j) \neq(n, n)}\right]$. So the invertible elements of $K\left[\mathrm{SL}_{n}\right]\left[\Delta_{n-1}^{\prime-1}\right]$ are the elements $\alpha \Delta_{n-1}^{\prime k}, \alpha \in K \backslash\{0\}, k \in \mathbb{Z}$. This shows that Δ_{n-1}^{\prime} is irreducible in $K\left[\mathrm{SL}_{n}\right]$, since otherwise there would be more invertible elements in $K\left[\mathrm{SL}_{n}\right]\left[\Delta_{n-1}^{\prime-1}\right]$. So the invertible elements of $K\left[\mathrm{SL}_{n}\right]$ are the non-zero scalars. Since d and the Δ_{i} are not scalar multiples of each other, all that remains is to show that d^{\prime} and $\Delta_{1}^{\prime}, \ldots, \Delta_{n-2}^{\prime}$ are irreducible. We only do this for d^{\prime}, the argument for the Δ_{i}^{\prime} is completely similar. Since d is prime in $K\left[\left(\xi_{i j}\right)_{(i, j) \neq(n, n)}\right]$ and d does not divide Δ_{n-1}, it follows that d is prime in $K\left[\left(\xi_{i j}\right)_{(i, j) \neq(n, n)}\right]\left[\Delta_{n-1}^{-1}\right]$ and therefore that d^{\prime} is prime in $K\left[\mathrm{SL}_{n}\right]\left[\Delta_{n-1}^{\prime-1}\right]$. To show that d^{\prime} is prime in $K\left[\mathrm{SL}_{n}\right]$ it suffices to show that for every $f \in K\left[\mathrm{SL}_{n}\right], \Delta_{n-1}^{\prime} f \in\left(d^{\prime}\right)$ implies $f \in\left(d^{\prime}\right)$. So assume that

$$
\begin{equation*}
\Delta_{n-1}^{\prime} f=g d^{\prime} \tag{*}
\end{equation*}
$$

for some $f, g \in K\left[\mathrm{SL}_{n}\right]$. If we take $\mathbf{a} \in K^{n}$ such that $a_{n}=(-1)^{n-1}$, then we have $x_{\mathbf{a}} \in$ $\mathrm{SL}_{n}, d^{\prime}\left(x_{\mathbf{a}}\right)=1$ and $\Delta_{n-1}^{\prime}\left(x_{\mathbf{a}}\right)=0$. So Δ_{n-1}^{\prime} does not divide d^{\prime}. But then Δ_{n-1}^{\prime} divides g, since Δ_{n-1}^{\prime} is irreducible. Cancelling a factor Δ_{n-1}^{\prime} on both sides of $(*)$, we obtain that $f \in\left(d^{\prime}\right)$.

3.3. Generators and relations and a \mathbb{Z}-form for $\tilde{Z}_{0}\left[z_{\varpi_{1}}, \ldots, z_{\sigma_{n-1}}\right] Z_{1}$

For the basics about monomial orderings and Gröbner bases I refer to [5].
Lemma 3. If we give the monomials in the variables $\xi_{i j}$ the lexicographic monomial ordering for which $\xi_{n n}>\xi_{n-1}>\cdots>\xi_{n 1}>\xi_{n-1 n}>\cdots>\xi_{n-11}>\cdots>\xi_{11}$, then det has leading term $\pm \xi_{n n} \cdots \xi_{22} \xi_{11}$ and d has leading term $\pm \xi_{n n-1}^{n-1} \cdots \xi_{32}^{2} \xi_{21}$.

Proof. I leave the proof of the first assertion to the reader. For the second assertion we use the notation and the formulas of Subsection 3.2. The leading term of a non-zero polynomial f is denoted by $\operatorname{LT}(f)$. Let $i \in\{1, \ldots, n\}$ and $\Lambda \subseteq\{1, \ldots, n\}$ with $|\Lambda|=k \geqslant 2$ and assume that $\partial_{i n}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right) \neq 0$. Then $i, n \in \Lambda$. Now we use the fact that no monomial in $\partial_{i n}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right)$ contains a variable with row index equal to i or with column index equal to n or a product of two variables which have the same row or column index.

First assume that $i>n-k+1$. Then

$$
\operatorname{LT}\left(\partial_{i n}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right)\right) \leqslant \pm \xi_{n-1} \cdots \xi_{i+1 i} \xi_{i-1 i-1} \cdots \xi_{n-k+1 n-k+1}
$$

with equality if and only if $\Lambda=\{n, n-1, \ldots, n-k+1\}$. Now assume that $i=n-k+1$. Then

$$
\operatorname{LT}\left(\partial_{i n}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right)\right) \leqslant \pm \xi_{n n-1} \cdots \xi_{n-k+2 n-k+1}
$$

with equality if and only if $\Lambda=\{n, n-1, \ldots, n-k+1\}$. Finally assume that $i<n-k+1$. Then

$$
\operatorname{LT}\left(\partial_{i n}\left(\operatorname{det}\left(\mathcal{X}_{\Lambda, \Lambda}\right)\right)\right) \leqslant \pm \xi_{n n-1} \cdots \xi_{n-k+3 n-k+2} \xi_{n-k+2 i}
$$

with equality if and only if $\Lambda=\{n, n-1, \ldots, n-k+2, i\}$.
So for $i, k \in\{1, \ldots, n\}$ with $k \geqslant 2$ we have:

$$
\operatorname{LT}\left(\partial_{i n} s_{k}\right)= \begin{cases} \pm \xi_{n n-1} \cdots \xi_{i+1 i} \xi_{i-1 i-1} \cdots \xi_{n-k+1 n-k+1} & \text { if } i+k>n+1 \\ \pm \xi_{n n-1} \cdots \xi_{n-k+2 n-k+1} & \text { if } i+k=n+1 \\ \pm \xi_{n n-1} \cdots \xi_{n-k+3 n-k+2} \xi_{n-k+2 i} & \text { if } i+k<n+1\end{cases}
$$

In particular $\operatorname{LT}\left(\partial_{i n} s_{k}\right) \leqslant \pm \xi_{n-1} \cdots \xi_{n-k+1 n-k+1}$ with equality if and only if $i+k=$ $n+1$. But then, by Eq. (3), $\operatorname{LT}(d)=\operatorname{LT}\left(\partial_{n n} s_{1}\right) \operatorname{LT}\left(\partial_{n-1 n} s_{2}\right) \cdots \operatorname{LT}\left(\partial_{1 n} s_{n}\right)=$ $\pm \xi_{n n-1}^{n-1} \cdots \xi_{32}^{2} \xi_{21}$.

Recall that the degree reverse lexicographical ordering on the monomials $u^{\alpha}=$ $u_{1}^{\alpha_{1}} \cdots u_{k}^{\alpha_{k}}$ in the variables u_{1}, \ldots, u_{k} is defined as follows: $u^{\alpha}>u^{\beta}$ if $\operatorname{deg}\left(u^{\alpha}\right)>\operatorname{deg}\left(u^{\beta}\right)$ or $\operatorname{deg}\left(u^{\alpha}\right)=\operatorname{deg}\left(u^{\beta}\right)$ and $\alpha_{i}<\beta_{i}$ for the last index i with $\alpha_{i} \neq \beta_{i}$.

Lemma 4. Let $f_{i} \in \mathbb{Z}\left[u_{1}, \ldots, u_{n-1}\right]$ be the polynomial such that $\operatorname{sym}\left(l \varpi_{i}\right)=f_{i}\left(\operatorname{sym}\left(\varpi_{1}\right)\right.$, $\ldots, \operatorname{sym}\left(\omega_{n-1}\right)$). If we give the monomials in the u_{i} the degree reverse lexicographic monomial ordering for which $u_{1}>\cdots>u_{n-1}$, then f_{i} has leading term u_{i}^{l}. Furthermore, the monomials that appear in $f_{i}-u_{i}^{l}$ are of total degree $\leqslant l$ and have exponents $<l .{ }^{6}$

Proof. Let σ_{i} be the i th elementary symmetric function in the variables x_{1}, \ldots, x_{n} and let $\lambda_{i} \in P=X(T)$ be the character $A \mapsto A_{i i}$ of T. Then $\operatorname{sym}\left(\varpi_{i}\right)=\sigma_{i}\left(e\left(\lambda_{1}\right), \ldots, e\left(\lambda_{n}\right)\right)$ for $i \in\{1, \ldots, n-1\}$. So the f_{i} can be found as follows. For $i \in\{1, \ldots, n-1\}$, determine $F_{i} \in$ $\mathbb{Z}\left[u_{1}, \ldots, u_{n}\right]$ such that $\sigma_{i}\left(x_{1}^{l}, \ldots, x_{n}^{l}\right)=F_{i}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$. Then $f_{i}=F_{i}\left(u_{1}, \ldots, u_{n-1}, 1\right)$. It now suffices to show that for $i \in\{1, \ldots, n-1\}, F_{i}-u_{i}^{l}$ is a \mathbb{Z}-linear combination of monomials in the u_{j} that have exponents $<l$, are of total degree $\leqslant l$ and that contain some u_{j} with $j>i$ (the monomials that contain u_{n} will become of total degree $<l$ when u_{n} is replaced by 1).

Fix $i \in\{1, \ldots, n-1\}$. Consider the following properties of a monomial in the x_{j} :
(x1) the monomial contains at least $i+1$ variables;
(x2) the exponents are $\leqslant l$;
(x3) the number of exponents equal to l is $\leqslant i$;
and the following properties of a monomial in the u_{j} :
(u1) the monomial contains a variable u_{j} for some $j>i$;
(u2) the total degree is $\leqslant l$;
(u3) the exponents are $<l$.
Let h be a symmetric polynomial in the x_{i} and let H be the polynomial in the u_{i} such that $h=H\left(\sigma_{1}, \ldots, \sigma_{n}\right)$. Give the monomials in the x_{i} the lexicographic monomial ordering for which $x_{1}>\cdots>x_{n}$. We will show by induction on the leading monomial of h that if each monomial that appears in h has property (x 1) respectively property (x2) respectively properties (x1), (x2) and (x3), then each monomial that appears in H has property (u1) respectively property (u2) respectively properties (u1), (u2) and (u3). Let $x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ be the leading monomial of h. Then $\alpha_{1} \geqslant \alpha_{2} \geqslant \cdots \geqslant \alpha_{n}$. Put $\beta=\left(\alpha_{1}-\alpha_{2}, \ldots, \alpha_{n-1}-\alpha_{n}, \alpha_{n}\right)$. Let k be the last index for which $\alpha_{k} \neq 0$. Then $\beta=\left(\alpha_{1}-\alpha_{2}, \ldots, \alpha_{k-1}-\alpha_{k}, \alpha_{k}, 0, \ldots, 0\right)$. If x^{α} has property (x 1), then $k \geqslant i+1, u^{\beta}$ has property (u 1) and the monomials that appear in σ^{β} have property (x 1), since σ_{k} appears in σ^{β}.

If x^{α} has property (x 2), then $\alpha_{1} \leqslant l, u^{\beta}$ is of total degree $\alpha_{1} \leqslant l$ and the monomials that appear in σ^{β} have exponents $\leqslant \beta_{1}+\cdots+\beta_{k}=\alpha_{1} \leqslant l$. Now assume that x^{α} has properties (x1), (x2) and (x3). For $j<k$ we have $\beta_{j}=\alpha_{j}-\alpha_{j+1}<l$, since $\alpha_{j+1} \neq 0$. So we have to show that $\beta_{k}=\alpha_{k}<l$. If α_{k} were equal to l, then we would have $\alpha_{1}=\cdots=\alpha_{k}=l$, by (x 2). This contradicts (x 3), since we have $k \geqslant i+1$ by (x 1). Finally we show that the

[^5]monomials that appear in σ^{β} have property (x3). If $\alpha_{1}<l$, then all these monomials have exponents $<l$. So assume $\alpha_{1}=l$. Let j be the smallest index for which $\beta_{j} \neq 0$. Then the number of exponents equal to l in a monomial that appears in σ^{β} is $\leqslant j$. On the other hand, $\alpha_{1}=\cdots=\alpha_{j}=l$. So we must have $j \leqslant i$, since x^{α} has property (x3).

Now we can apply the induction hypothesis to $h-c \sigma^{\beta}$, where c is the leading coefficient of h.

The assertion about $F_{i}-u_{i}^{l}$ now follows, because the monomials that appear in $\sigma_{i}\left(x_{1}^{l}, \ldots, x_{n}^{l}\right)-\sigma_{i}^{l}$ have the properties (x1), (x2) and (x3).

From now on we denote $z_{\sigma_{i}}$ by $z_{i} .{ }^{7}$ Let $\mathbb{Z}\left[\mathrm{SL}_{n}\right]$ be the \mathbb{Z}-subalgebra of $\mathbb{C}\left[\mathrm{SL}_{n}\right]$ generated by the $\xi_{i j}^{\prime}$ and A be the \mathbb{Z}-subalgebra of Z generated by the $\tilde{\xi}_{i j}$. So $A=\pi^{\mathrm{co}}\left(\mathbb{Z}\left[\mathrm{SL}_{n}\right]\right)$. Let B be the \mathbb{Z}-subalgebra generated by the elements $\tilde{\xi}_{i j}, u_{1}, \ldots, u_{n-1}$ and z_{1}, \ldots, z_{n-1}. For a commutative ring R we put $A(R)=R \otimes_{\mathbb{Z}} A$ and $B(R)=R \otimes_{\mathbb{Z}} B$. Clearly we can identify $A(\mathbb{C})$ with \tilde{Z}_{0}. In the proposition below "natural homomorphism" means a homomorphism that maps $\xi_{i j}$ to $\tilde{\xi}_{i j}$ and, if this applies, the variables u_{i} and z_{i} to the equally named elements of Z. The polynomials f_{i} below are the ones defined in Lemma 4.

Proposition 1. The following holds:
(i) The kernel of the natural homomorphism from the polynomial algebra $\mathbb{Z}\left[\left(\xi_{i j}\right)_{i j}, u_{1}, \ldots, u_{n-1}, z_{1}, \ldots, z_{n-1}\right]$ to B is generated by the elements $\operatorname{det}-1, f_{1}-s_{1}, \ldots, f_{n-1}-s_{n-1}, z_{1}^{2}-\Delta_{1}, \ldots, z_{n-1}^{2}-\Delta_{n-1}$.
(ii) The homomorphism $B(\mathbb{C}) \rightarrow Z$, given by the universal property of ring transfer, is injective.
(iii) A is a free \mathbb{Z}-module and B is a free A-module with the monomials $u_{1}^{k_{1}} \cdots u_{n-1}^{k_{n-1}} z_{1}^{m_{1}} \cdots z_{n-1}^{m_{n-1}}, 0 \leqslant k_{i}<l, 0 \leqslant m_{i}<2$, as a basis.
(iv) $A\left[z_{1}, \ldots, z_{n-1}\right] \cap Z_{1}=A \cap Z_{1}=\mathbb{Z}\left[\tilde{s}_{1}, \ldots, \tilde{s}_{n-1}\right]$ and $B \cap Z_{1}$ is a free $A \cap Z_{1}$-module with the monomials $u_{1}^{k_{1}} \cdots u_{n-1}^{k_{n-1}}, 0 \leqslant k_{i}<l$, as a basis.

Proof. Let Z_{0}^{\prime} be the \mathbb{C}-subalgebra of Z generated by the $\tilde{\xi}_{i j}$ and z_{1}, \ldots, z_{n-1}. As we have seen in Subsection 1.5, the z_{i} satisfy the relations $z_{i}^{2}=\tilde{\Delta}_{i}$. The $\tilde{\Delta}_{i}$ are part of a generating transcendence basis of the field of fractions $\operatorname{Fr}\left(\tilde{Z}_{0}\right)$ of \tilde{Z}_{0} by arguments very similar to those at the end of the proof of Theorem 3. This shows that the monomials $z_{1}^{m_{1}} \cdots z_{n-1}^{m_{n-1}}, 0 \leqslant m_{i}<2$, form a basis of $\operatorname{Fr}\left(Z_{0}^{\prime}\right)$ over $\operatorname{Fr}\left(\tilde{Z}_{0}\right)$ and of Z_{0}^{\prime} over \tilde{Z}_{0}. It follows that the kernel of the natural homomorphism from the polynomial algebra $\mathbb{C}\left[\left(\xi_{i j}\right)_{i j}, z_{1}, \ldots, z_{n-1}\right]$ to Z_{0}^{\prime} is generated by the elements det $-1, z_{1}^{2}-\Delta_{1}, \ldots, z_{n-1}^{2}-$ Δ_{n-1}. So we have generators and relations for Z_{0}^{\prime}. By the construction from Subsection 1.5 we then obtain that the kernel I of the natural homomorphism from the polynomial algebra $\mathbb{C}\left[\left(\xi_{i j}\right)_{i j}, u_{1}, \ldots, u_{n-1}, z_{1}, \ldots, z_{n-1}\right]$ to $Z_{0}^{\prime} Z_{1}$ is generated by the elements $\operatorname{det}-1, f_{1}-s_{1}, \ldots, f_{n-1}-s_{n-1}, z_{1}^{2}-\Delta_{1}, \ldots, z_{n-1}^{2}-\Delta_{n-1}$.

[^6]Now we give the monomials in the variables $\left(\xi_{i j}\right)_{i j}, u_{1}, \ldots, u_{n-1}, z_{1}, \ldots, z_{n-1}$ a monomial ordering which is the lexicographical product of an arbitrary monomial ordering on the monomials in the z_{i}, the monomial ordering of Lemma 4 on the monomials in the u_{i} and the monomial ordering of Lemma 3 on the $\xi_{i j} .{ }^{8}$ Then the ideal generators mentioned above have leading monomials $\xi_{n n} \cdots \xi_{22} \xi_{11}, u_{1}^{l}, \ldots, u_{n-1}^{l}, z_{1}^{2}, \ldots, z_{n-1}^{2}$ and the leading coefficients are all ± 1. Since the leading monomials have gcd 1 , the ideal generators form a Gröbner basis; see [5, Chapter 2, §9, Theorem 3 and Proposition 4], for example. Since the leading coefficients are all ± 1, it follows from the division with remainder algorithm that the ideal of $\mathbb{Z}\left[\left(\xi_{i j}\right)_{i j}, u_{1}, \ldots, u_{n-1}, z_{1}, \ldots, z_{n-1}\right]$ generated by these elements consists of the polynomials in I that have integral coefficients and that it has the \mathbb{Z}-span of the monomials that are not divisible by any of the above leading monomials as a direct complement. This proves (i) and (ii).
(iii) The canonical images of the above monomials form a \mathbb{Z}-basis of B. These monomials are the products of the monomials in the $\xi_{i j}$ that are not divisible by $\xi_{n n} \cdots \xi_{22} \xi_{11}$ and the restricted monomials mentioned in the assertion. The canonical images of the monomials in the $\xi_{i j}$ that are not divisible by $\xi_{n n} \cdots \xi_{22} \xi_{11}$ form a \mathbb{Z}-basis of A.
(iv) As we have seen, the monomials with exponents <2 in the z_{i} form a basis of the \tilde{Z}_{0} module Z_{0}^{\prime}. So $A\left[z_{1}, \ldots, z_{n-1}\right] \cap \tilde{Z}_{0}=A$. Therefore, by Theorem 1 (ii), $A\left[z_{1}, \ldots, z_{n-1}\right] \cap$ $Z_{1}=A \cap Z_{1}=\pi^{\mathrm{co}}\left(\mathbb{Z}\left[\mathrm{SL}_{n}\right]^{\mathrm{SL}_{n}}\right)$. Now $(\mathbb{Z} P)^{W}=\mathbb{Z}\left[\operatorname{sym}\left(\varpi_{1}\right), \ldots, \operatorname{sym}\left(\varpi_{n-1}\right)\right]$ (see [3, No. VI.3.4, Theorem 1]) and the s_{i}^{\prime} are in $\mathbb{Z}\left[\mathrm{SL}_{n}\right]$, so $\mathbb{Z}\left[\mathrm{SL}_{n}\right]^{\mathrm{SL}_{n}}=\mathbb{Z}\left[s_{1}^{\prime}, \ldots, s_{n-1}^{\prime}\right]$ by the restriction theorem for $\mathbb{C}\left[\mathrm{SL}_{n}\right]$. This proves the first assertion. From the proof of Theorem 2 we know that the given monomials form a basis of Z_{1} over $Z_{0} \cap Z_{1}$ and a basis of Z over Z_{0}. So an element of Z is in Z_{1} if and only if its coefficients with respect to this basis are in $Z_{0} \cap Z_{1}$. The second assertion now follows from (iii).

By (ii) of the above proposition we may identify $B(\mathbb{C})$ with $\tilde{Z}_{0}\left[z_{1}, \ldots, z_{n-1}\right] Z_{1}$ and $B(\mathbb{C})\left[\tilde{\Delta}_{1}^{-1}, \ldots, \tilde{\Delta}_{n-1}^{-1}\right]$ with Z.

Put $\bar{Z}=Z /(\tilde{d})$. For the proof of Theorem 4 we need a version for \bar{Z} of Proposition 1. First we introduce some more notation. For $u \in Z$ we denote the canonical image of u in \bar{Z} by \bar{u}. For $f \in \mathbb{C}\left[\mathrm{Mat}_{n}\right]$ we write \bar{f} instead of $\overline{\tilde{f}}$. Let \bar{A} be the \mathbb{Z}-subalgebra of \bar{Z} generated by the $\bar{\xi}_{i j}$ and let \bar{B} be the \mathbb{Z}-subalgebra generated by the elements $\bar{\xi}_{i j}, \bar{u}_{1}, \ldots, \bar{u}_{n-1}$ and $\bar{z}_{1}, \ldots, \bar{z}_{n-1}$. For a commutative ring R we put $\bar{A}(R)=R \otimes_{\mathbb{Z}} \bar{A}$ and $\bar{B}(R)=R \otimes_{\mathbb{Z}} \bar{B}$.

Proposition $\overline{1}$. The following holds:

(i) The kernel of the natural homomorphism from the polynomial algebra $\mathbb{Z}\left[\left(\xi_{i j}\right)_{i j}, u_{1}, \ldots, u_{n-1}, z_{1}, \ldots, z_{n-1}\right]$ to \bar{B} is generated by the elements $\operatorname{det}-1, d, f_{1}-s_{1}, \ldots, f_{n-1}-s_{n-1}, z_{1}^{2}-\Delta_{1}, \ldots, z_{n-1}^{2}-\Delta_{n-1}$.
(ii) The kernel of the natural homomorphism $\mathbb{Z}\left[\mathrm{Mat}_{n}\right] \rightarrow \bar{A}$ is $(\operatorname{det}-1, d)$.
(iii) The homomorphism $\bar{B}(\mathbb{C}) \rightarrow \bar{Z}$, given by the universal property of ring transfer, is injective.

[^7](iv) \bar{A} is a free \mathbb{Z}-module and \bar{B} is a free \bar{A}-module with the monomials $\bar{u}_{1}^{k_{1}} \cdots \bar{u}_{n-1}^{k_{n-1}} \bar{z}_{1}^{m_{1}} \cdots \bar{z}_{n-1}^{m_{n-1}}, 0 \leqslant k_{i}<l, 0 \leqslant m_{i}<2$, as a basis.
(v) The \bar{A}-span of the monomials $\bar{u}_{1}^{k_{1}} \cdots \bar{u}_{n-1}^{k_{n-1}}, 0 \leqslant k_{i}<l$, is closed under multiplication.

Proof. From Lemma 2(iii) we deduce that $\left(A(\mathbb{C})\left[\tilde{\Delta}_{1}^{-1}, \ldots, \tilde{\Delta}_{n-1}^{-1}\right] \tilde{d}\right) \cap A(\mathbb{C})=A(\mathbb{C}) \tilde{d}$. From this it follows, using the $A(\mathbb{C})$-basis of $B(\mathbb{C})$, that $(Z \tilde{d}) \cap B(\mathbb{C})$, which is the kernel of the natural homomorphism $B(\mathbb{C}) \rightarrow \bar{Z}$, equals $B(\mathbb{C}) \tilde{d}$. From (i) and (ii) of Proposition 1 or from its proof it now follows that the kernel of the natural homomorphism from the polynomial algebra $\mathbb{C}\left[\left(\xi_{i j}\right)_{i j}, u_{1}, \ldots, u_{n-1}, z_{1}, \ldots, z_{n-1}\right]$ to \bar{Z} is generated by the elements det $-1, d, f_{1}-s_{1}, \ldots, f_{n-1}-s_{n-1}, z_{1}^{2}-\Delta_{1}, \ldots, z_{n-1}^{2}-\Delta_{n-1}$.

Again using the $A(\mathbb{C})$-basis of $B(\mathbb{C})$ we obtain that $(B(\mathbb{C}) \tilde{d}) \cap A(\mathbb{C})=A(\mathbb{C}) \tilde{d}$. From this it follows that the kernel of the natural homomorphism $\mathbb{C}\left[\mathrm{Mat}_{n}\right] \rightarrow \bar{Z}$ is generated by $\operatorname{det}-1$ and d.

By Lemma 3 we have $\operatorname{LT}(d)= \pm \xi_{n n-1}^{n-1} \cdots \xi_{32}^{2} \xi_{21}$ which has gcd 1 with the leading monomials of the other ideal generators, so the ideal generators mentioned above form a Gröbner basis over \mathbb{Z}. Now (i)-(iv) follow as in the proof of Proposition 1.
(v) This follows from the fact that the remainder modulo the Gröbner basis of a polynomial in $\mathbb{Z}\left[\left(\xi_{i j}\right)_{i j}, u_{1}, \ldots, u_{n-1}\right]$ is again in $\mathbb{Z}\left[\left(\xi_{i j}\right)_{i j}, u_{1}, \ldots, u_{n-1}\right]$.

By (ii) and (iii) of the above proposition \bar{A} and $\bar{B}(\mathbb{C})\left[\bar{\Delta}_{1}^{-1}, \ldots, \bar{\Delta}_{n-1}^{-1}\right]$ can be identified with respectively $\mathbb{Z}\left[\mathrm{Mat}_{n}\right] /(\operatorname{det}-1, d)$ and \bar{Z}. From (iv) it follows that, for any commutative ring $R, \bar{A}(R)$ embeds in $\bar{B}(R)$.

3.4. The theorem

Lemma 5. Let A be an associative algebra with 1 over a field F and let L be an extension of F. Assume that for every finite extension F^{\prime} of $F, F^{\prime} \otimes_{F}$ A has no zero divisors. Then the same holds for $L \otimes_{F} A$.

Proof. Assume that there exist $a, b \in L \otimes_{F} A \backslash\{0\}$ with $a b=0$. Let $\left(e_{i}\right)_{i \in I}$ be an F-basis of A and let $c_{i j}^{k} \in F$ be the structure constants. Write $a=\sum_{i \in I} \alpha_{i} e_{i}$ and $b=\sum_{i \in I} \beta_{i} e_{i}$. Let I_{a} respectively I_{b} be the set of indices i such that $\alpha_{i} \neq 0$ respectively $\beta_{i} \neq 0$ and let J be the set of indices k such that $c_{i j}^{k} \neq 0$ for some $(i, j) \in I_{a} \times I_{b}$. Then I_{a} and I_{b} are non-empty and I_{a}, I_{b} and J are finite. Take $i_{a} \in I_{a}$ and $i_{b} \in I_{b}$. Since $a b=0$, the following equations over F in the variables $x_{i}, i \in I_{a}, y_{i}, i \in I_{b}, u$ and v have a solution over L :

$$
\begin{aligned}
& \sum_{i \in I_{a}, j \in I_{b}} c_{i j}^{k} x_{i} y_{j}=0 \quad \text { for all } k \in J, \\
& x_{i_{a}} u=1, \quad y_{i_{b}} v=1
\end{aligned}
$$

But then they also have a solution over a finite extension F^{\prime} of F by Hilbert's Nullstellensatz. This solution gives us non-zero elements $a^{\prime}, b^{\prime} \in F^{\prime} \otimes_{F} A$ with $a^{\prime} b^{\prime}=0$.

Lemma 6. Let R be the valuation ring of a non-trivial discrete valuation of a field F and let K be its residue class field. Let A be an associative algebra with 1 over R which is free as an R-module and let L be an extension of F. Assume that for every finite extension K^{\prime} of $K, K^{\prime} \otimes_{R} A$ has no zero divisors. Then the same holds for $L \otimes_{R} A$.

Proof. Assume that there exist $a, b \in L \otimes_{R} A \backslash\{0\}$ with $a b=0$. By the above lemma we may assume that $a, b \in F^{\prime} \otimes_{R} A \backslash\{0\}$ for some finite extension F^{\prime} of F. Let $\left(e_{i}\right)_{i \in I}$ be an R-basis of A. Let v be an extension to F^{\prime} of the given valuation of F, let R^{\prime} be the valuation ring of v, let K^{\prime} be the residue class field and let $\delta \in R^{\prime}$ be a uniformiser for v. Note that R^{\prime} is a local ring and a principal ideal domain (and therefore a UFD) and that K^{\prime} is a finite extension of K (see e.g. [6, Chapter 8, Theorem 5.1]). By multiplying a and b by suitable integral powers of δ we may assume that their coefficients with respect to the basis $\left(e_{i}\right)_{i \in I}$ are in R^{\prime} and not all divisible by δ (in R^{\prime}). By passing to the residue class field K we then obtain non-zero $a^{\prime}, b^{\prime} \in K^{\prime} \otimes_{R^{\prime}}\left(R^{\prime} \otimes_{R} A\right)=K^{\prime} \otimes_{R} A$ with $a^{\prime} b^{\prime}=0$.

Remark. The above lemmas also hold if we replace "zero divisors" by "non-zero nilpotent elements."

For $t \in\{0, \ldots, n-1\}$ let \bar{B}_{t} be the \mathbb{Z}-subalgebra generated by the elements $\bar{\xi}_{i j}$, $\bar{u}_{1}, \ldots, \bar{u}_{n-1}$ and $\bar{z}_{1}, \ldots, \bar{z}_{t}$. So $\bar{B}_{n-1}=\bar{B}$. For a commutative ring R we put $\bar{B}_{t}(R)=$ $R \otimes_{\mathbb{Z}} \bar{B}_{t}$. From (iv) and (v) of Proposition $\overline{1}$ we deduce that the monomials $\bar{u}_{1}^{k_{1}} \cdots \bar{u}_{n-1}^{k_{n-1}} \times$ $\bar{z}_{1}^{m_{1}} \cdots \bar{z}_{t}^{m_{t}}, 0 \leqslant k_{i}<l, 0 \leqslant m_{i}<2$, form a basis of \bar{B}_{t} over \bar{A}. So for any commutative ring R we have bases for $\bar{B}_{t}(R)$ over $\bar{A}(R)$ and over R. Note that $\bar{B}_{t}(R)$ embeds in $\bar{B}(R)$, since the \mathbb{Z}-basis of \bar{B}_{t} is part of the \mathbb{Z}-basis of \bar{B}.

Modifying the terminology of [11, §16.6], we define the Jacobian ideal of an m-tuple of polynomials $\varphi_{1}, \ldots, \varphi_{m}$ as the ideal generated by the $k \times k$ minors of the Jacobian matrix of $\varphi_{1}, \ldots, \varphi_{m}$, where k is the height of the ideal generated by the φ_{i}.

Theorem 4. If l is a power of an odd prime p, then Z is a unique factorisation domain.

Proof. We have seen in Subsection 3.1 that for $n=2$ it holds without any extra assumptions on l, so assume that $n \geqslant 3$. For the elimination of variables in the proof of Theorem 3 we only needed the invertibility of \tilde{d}, so $Z\left[\tilde{d}^{-1}\right]$ is isomorphic to a localisation of a polynomial algebra and therefore a UFD. So, by Nagata's lemma, it suffices to prove that \tilde{d} is a prime element of Z, i.e. that $\bar{Z}=Z /(\tilde{d})$ is an integral domain. We do this in 5 steps.

Step 1. $\bar{B}(K)$ is reduced for any field K.
We may assume that K is algebraically closed. Since $\bar{B}(K)$ is a finite $\bar{A}(K)$-module it follows that $\bar{B}(K)$ is integral over $\bar{A}(K) \cong K\left[\mathrm{Mat}_{n}\right] /(\operatorname{det}-1, d)$. So its Krull dimension is $n^{2}-2$. By Proposition $\overline{1}(i), \bar{B}(K)$ is isomorphic to the quotient of a polynomial ring over K in $n^{2}+2(n-1)$ variables by an ideal I which is generated by
$2 n$ elements. ${ }^{9}$ So $\bar{B}(K)$ is Cohen-Macaulay (see [11, Proposition 18.13]). Let \mathcal{V} be the closed subvariety of $\left(n^{2}+2(n-1)\right)$-dimensional affine space defined by I. Then, by [11, Corollary 18.14], \mathcal{V} is equidimensional of dimension $n^{2}-2$. By Theorem 18.15 in [11] it suffices to show that the closed subvariety of \mathcal{V} defined by the Jacobian ideal of det $-1, d, f_{1}-s_{1}, \ldots, f_{n-1}-s_{n-1}, z_{1}^{2}-\Delta_{1}, z_{n-1}^{2}-\Delta_{n-1}$ does not contain any of the irreducible components of \mathcal{V}. This amounts to showing that this subvariety is of codimension $\geqslant 1$ in \mathcal{V}, since \mathcal{V} equidimensional.

By Lemma 2, $(\operatorname{det}-1, d)$ is a prime ideal of $K\left[\mathrm{Mat}_{n}\right]$. So we have an embedding $K\left[\mathrm{Mat}_{n}\right] /(\operatorname{det}-1, d) \rightarrow K[\mathcal{V}]$ which is the comorphism of a finite surjective morphism of varieties $\mathcal{V} \rightarrow V(\operatorname{det}-1, d)$, where $V(\operatorname{det}-1, d)$ is the closed subvariety of Mat ${ }_{n}$ that consists of the matrices of determinant 1 on which d vanishes. This morphism maps the closed subvariety of \mathcal{V} defined by the Jacobian ideal of det $-1, d, f_{1}-s_{1}, \ldots, f_{n-1}-s_{n-1}, z_{1}^{2}-$ $\Delta_{1}, \ldots, z_{n-1}^{2}-\Delta_{n-1}$ into the closed subvariety of $V(\operatorname{det}-1, d)$ defined by the ideal generated by the $2 n$th order minors of the Jacobian matrix of $\left(s_{1}, \ldots, s_{n}, d, \Delta_{1}, \ldots, \Delta_{n-1}\right)$ with respect to the variables $\xi_{i j}$. This follows easily from the fact that $s_{n}=\operatorname{det}$ and that the z_{j} and u_{j} do not appear in the s_{i} and Δ_{i}. Since finite morphisms preserve dimension (see e.g. [11, Corollary 9.3]), it suffices to show that the latter variety is of codimension $\geqslant 1$ in $V(\operatorname{det}-1, d)$. Since $V(\operatorname{det}-1, d)$ is irreducible, this follows from Lemma 1(ii).

Step 2. $\bar{B}_{0}(K)$ is an integral domain for any field K of characteristic p.
We may assume that K is algebraically closed. From the construction of the f_{i} (see the proof of Lemma 4) and the additivity of the p th power map in characteristic p it follows that $f_{i} \equiv u_{i}^{l} \bmod p$. So the kernel of the natural homomorphism from the polynomial algebra $K\left[\left(\xi_{i j}\right)_{i j}, u_{1}, \ldots, u_{n-1}, z_{1}, \ldots, z_{n-1}\right]$ to $\bar{B}(K)$ is generated by the elements det $-1, d, u_{1}^{l}-s_{1}, \ldots, u_{n-1}^{l}-s_{n-1}$ and the $\bar{A}(K)$-span of the monomials $\bar{u}_{1}^{k_{1}} \cdots \bar{u}_{t}^{k_{t}}$, $0 \leqslant k_{i}<l$, is closed under multiplication for each $t \in\{0, \ldots, n-1\}$. We show by induction on t that $\bar{B}_{0, t}(K):=\bar{A}(K)\left[\bar{u}_{1}, \ldots, \bar{u}_{t}\right]$ is an integral domain for $t=0, \ldots, n-1$. For $t=0$ this follows from Lemma 2 and Proposition $\overline{1}($ ii). Let $t \in\{1, \ldots, n-1\}$ and assume that it holds for $t-1$. Clearly $\bar{B}_{0, t}(K)=\bar{B}_{0, t-1}(K)\left[\bar{u}_{t}\right] \cong \bar{B}_{t-1}(K)[x] /\left(x^{l}-\bar{s}_{t}\right)$. So it suffices to prove that $x^{l}-\bar{s}_{t}$ is irreducible over the field of fractions of $\bar{B}_{0, t-1}(K)$. By the Vahlen-Capelli criterion or a more direct argument, it suffices to show that \bar{s}_{t} is not a p th power in the field of fractions of $\bar{B}_{0, t-1}(K)$. So assume that $\bar{s}_{t}=(v / w)^{p}$ for some $v, w \in \bar{B}_{0, t-1}(K)$ with $w \neq 0$. Then we have $v^{p}=\bar{s}_{t} w^{p}=\bar{u}_{t}^{l} w^{p}$. So with $l^{\prime}=l / p$, we have $\left(v-\bar{u}_{t}^{l^{\prime}} w\right)^{p}=0$. But then $v-\bar{u}_{t}^{l^{\prime}} w=0$ by Step 1 . Now recall that v and w can be expressed uniquely as $\bar{A}(K)$-linear combinations of monomials in $\bar{u}_{1}, \ldots, \bar{u}_{t-1}$ with exponents $<l$. If such a monomial appears with a non-zero coefficient in w, then $\bar{u}_{t}^{l^{\prime}}$ times this monomial appears with the same coefficient in the expression of $0=v-\bar{u}_{t}^{l^{\prime}} w$ as an $\bar{A}(K)-$ linear combination of restricted monomials in $\bar{u}_{1}, \ldots, \bar{u}_{n-1}$. Since this is impossible, we must have $w=0$. A contradiction.

[^8]Step 3. $\bar{B}_{0}(\mathbb{C})$ is an integral domain.
This follows immediately from Step 2 and Lemma 6 applied to the p-adic valuation of \mathbb{Q} and with $L=\mathbb{C}$.

Step 4. $\bar{B}_{t}(\mathbb{C})$ is an integral domain for $t=0, \ldots, n-1$.

We prove this by induction on t. For $t=0$ it is the assertion of Step 3. Let $t \in\{1, \ldots$, $n-1\}$ and assume that it holds for $t-1$. Clearly $\bar{B}_{t}(\mathbb{C})=\bar{B}_{t-1}(\mathbb{C})\left[\bar{z}_{t}\right] \cong \bar{B}_{t-1}(\mathbb{C})[x] /$ $\left(x^{2}-\bar{\Delta}_{t}\right)$. So it suffices to prove that $x^{2}-\bar{\Delta}_{t}$ is irreducible over the field of fractions of $\bar{B}_{t-1}(\mathbb{C})$. Assume that $x^{2}-\bar{\Delta}_{t}$ has a root in this field, i.e. that $\bar{\Delta}_{t}=(v / w)^{2}$ for some $v, w \in \bar{B}_{t-1}(\mathbb{C})$ with $w \neq 0$. By the same arguments as in the proof of Lemma 5 we may assume that for some finite extension F of \mathbb{Q} there exist $v, w \in \bar{B}_{t-1}(F)$ with $w \neq 0$ and $w^{2} \bar{\Delta}_{t}=v^{2}$. Let ν_{2} be an extension to F of the 2 -adic valuation of \mathbb{Q}, let S_{2} be the valuation ring of ν_{2}, let K be the residue class field and let $\delta \in S_{2}$ be a uniformiser for ν_{2}. We may assume that the coefficients of v and w with respect to the \mathbb{Z}-basis of \bar{B}_{t-1} mentioned earlier are in S_{2}. Assume that the coefficients of w are all divisible by δ (in S_{2}). Then $w=0$ in $\bar{B}_{t-1}(K)$ and therefore $v^{2}=0$ in $\bar{B}_{t-1}(K)$. But by Step $1, \bar{B}_{t-1}(K)$ is reduced, so $v=0$ in $\bar{B}_{t-1}(K)$ and all coefficients of v are divisible by δ. So, by cancelling a suitable power of δ in w and v, we may assume that not all coefficients of w are divisible by δ. By passing to the residue class field K we then obtain $v, w \in \bar{B}_{t-1}(K)$ with $w \neq 0$ and $w^{2} \bar{\Delta}_{t}=v^{2}$. But then $\left(w \bar{z}_{t}-v\right)^{2}=0$ in $\bar{B}_{t}(K)$, since $\bar{z}_{t}^{2}=\bar{\Delta}_{t}$ and K is of characteristic 2 . The reducedness of $\bar{B}_{t}(K)$ (Step 1) now gives $w \bar{z}_{t}-v=0$ in $\bar{B}_{t}(K)$. Now recall that v and w can be expressed uniquely as $\bar{A}(K)$-linear combinations of the monomials $\bar{u}_{1}^{k_{1}} \cdots \bar{u}_{n-1}^{k_{n-1}} \bar{z}_{1}^{m_{1}} \cdots \bar{z}_{t-1}^{m_{t-1}}$, $0 \leqslant k_{i}<l, 0 \leqslant m_{i}<2$. We then obtain a contradiction in the same way as at the end of Step 2.

Step 5. $Z /(d)$ is an integral domain.
Since $\bar{Z}=\bar{B}(\mathbb{C})\left[\bar{\Delta}_{1}^{-1}, \ldots, \bar{\Delta}_{n-1}^{-1}\right]$ and the $\bar{\Delta}_{i}$ are non-zero in $\bar{A}(\mathbb{C}) \cong \mathbb{C}\left[\operatorname{SL}_{n}\right] /\left(d^{\prime}\right)$ by Lemma 2, this follows from Step 4.

Remark. To attempt a proof for arbitrary odd $l>1$ I have tried the filtration with $\operatorname{deg}\left(\xi_{i j}\right)=2 l, \operatorname{deg}\left(z_{i}\right)=l i$ and $\operatorname{deg}\left(u_{i}\right)=2 i$. But the main problem with this filtration is that it does not simplify the relations $s_{i}=f_{i}\left(u_{1}, \ldots, u_{n-1}\right)$ enough.

References

[1] A. Braun, C.R. Hajarnavis, Smooth polynomial identity algebras with almost factorial centers, Warwick preprint: 7/2003.
[2] N. Bourbaki, Algèbre, Chapitres 1, 2 et 3, Hermann, Paris, 1970.
[3] N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.
[4] J.-M. Bois, Corps enveloppantes des algèbres de Lie en dimension infinie et en charactéristique positive, Thesis, University of Rheims, 2004.
[5] D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, second ed., Undergrad. Texts Math., Springer-Verlag, New York, 1997.
[6] P.M. Cohn, Algebra, vol. 2, second ed., Wiley, Chichester, 1982.
[7] C. de Concini, V.G. Kac, Representations of quantum groups at roots of 1, in: Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Paris, 1989, in: Progr. Math., vol. 92, Birkhäuser, Boston, MA, 1990, pp. 471-506.
[8] C. de Concini, V.G. Kac, C. Procesi, Quantum coadjoint action, J. Amer. Math. Soc. 5 (1) (1992) 151-189.
[9] C. de Concini, C. Procesi, Quantum groups, in: D-Modules, Representation Theory, and Quantum Groups, Venice, 1992, in: Lecture Notes in Math., vol. 1565, Springer-Verlag, Berlin, 1993, pp. 31-140.
[10] J. Dixmier, Sur les algèbres enveloppantes de $\mathfrak{s l}(n, \mathbb{C})$ et $\mathfrak{a f}(n, \mathbb{C})$, Bull. Sci. Math. (2) 100 (1) (1976) 57-95.
[11] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Grad. Texts in Math., vol. 150, Springer-Verlag, New York, 1995.
[12] F. Fauquant-Millet, Sur une algèbre parabolique P de $\check{U}_{q}\left(\mathfrak{s l}_{n+1}\right)$ et ses semi-invariants par l'action adjointe de P, Bull. Sci. Math. 122 (7) (1998) 495-519.
[13] F. Fauquant-Millet, Quantification de la localisation de Dixmier de $U\left(\mathfrak{s l}_{n+1}(\mathfrak{C})\right)$, J. Algebra 218 (1) (1999) 93-116.
[14] Ya.S. Krylyuk, The Zassenhaus variety of a classical semi-simple Lie algebra in finite characteristic, Mat. Sb. (N.S.) 130(172) (4) (1986) 475-487 (in Russian); English translation: Math. USSR Sb. 58 (2) (1987) 477-490.
[15] V.L. Popov, Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974) 294-322 (in Russian); English translation: Math. USSR Izv. 8 (2) (1974) 301-327.
[16] A.A. Premet, R.H. Tange, Zassenhaus varieties of general linear Lie algebras, J. Algebra 294 (1) (2005) 177-195.
[17] R. Steinberg, Regular elements of semi-simple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965) 49-80.

[^0]: E-mail address: rtange@ maths.soton.ac.uk.
 0021-8693/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jalgebra.2005.11.036

[^1]: 1 The Gelfand-Kirillov conjecture for a Lie algebra \mathfrak{g} over K states that the fraction field of $U(\mathfrak{g})$ is isomorphic to a Weyl skew field $D_{n}(L)$ over a purely transcendental extension L of K.

[^2]: ${ }^{2}$ In [8] Z^{2} is denoted by Z. The notation here comes from [9]. The centre of U is denoted by the same letter, but this will cause no confusion.

[^3]: ${ }^{3} \tilde{G}$ is a group of automorphisms of the algebra \hat{U} and does not leave Z stable. However, $S^{\tilde{G}}$ can be defined in the obvious way for every subset S of \hat{U}.

[^4]: 4 This method was also used by Krylyuk in [14] to determine generators and relations for the centre of the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g}. Our homomorphism $\pi^{\mathrm{co}}: \mathbb{C}[G] \rightarrow Z_{0}$ plays the rôle of Krylyuk's G equivariant isomorphism $\eta: S(\mathfrak{g})^{(1)} \rightarrow Z_{p}$, where we use the notation of [16].
 ${ }^{5}$ For two $n \times n$ matrices A and B we have $\bigwedge^{k}(A B)=\bigwedge^{k}(A) \bigwedge^{k}(B)$. From this it follows that if either A is lower triangular or B is upper triangular, then $\Delta_{k}(A B)=\Delta_{k}(A) \Delta_{k}(B)$.

[^5]: ${ }^{6}$ So our f_{i} are related to the polynomials $P_{i}=x_{i}^{l}-\sum_{\mu} d_{i \mu} x_{\mu}$ from the proof of Proposition 6.4 in [8] as follows: $P_{i}=f_{i}\left(x_{1}, \ldots, x_{n-1}\right)-\operatorname{sym}\left(l \varpi_{i}\right)$. In particular $d_{i 0}=\operatorname{sym}\left(l \varpi_{i}\right)$ and $d_{i \mu} \in \mathbb{Z}$ for all $\mu \in P \backslash\{0\}$ (we are, of course, in the situation that $\mathfrak{g}=\mathfrak{s l}_{n}$).

[^6]: ${ }^{7} \operatorname{In}[8,9] \quad z_{\alpha_{i}}$ is denoted by z_{i}.

[^7]: ${ }^{8}$ So the z_{i} are greater than the u_{i} which are greater than the $\xi_{i j}$.

[^8]: ${ }^{9}$ The statement in Proposition $\overline{1}$ (i) is only for \bar{B}, but the fact that $\bar{B}(K)=K \otimes_{\mathbb{Z}} \bar{B}$ has the same presentation, the coefficients of the ideal generators reduced mod p, holds for very general reasons. See e.g. [2, No. II.3.6, Proposition 5 and its corollary].

