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Summary

It is proved that the centre Z of the simply connected quantised universal enveloping algebra over
C, Uε,P (sln), ε a primitive lth root of unity, l an odd integer > 1, has a rational field of fractions.
Furthermore it is proved that if l is a power of an odd prime, Z is a unique factorisation domain.
© 2005 Elsevier Inc. All rights reserved.

Introduction

In [8] de Concini, Kac and Procesi introduced the simply connected quantised universal
enveloping algebra U = Uε,P (g) over C at a primitive lth root of unity ε associated to a
simple finite-dimensional complex Lie algebra g. The importance of the study of the centre
Z of U and its spectrum Maxspec(Z) is pointed out in [7,8].

In this article we consider the following two conjectures concerning the centre Z of U

in the case g = sln:

(1) Z has a rational field of fractions.
(2) Z is a unique factorisation domain (UFD).

The same conjectures can be made for the universal enveloping algebra U(g) of the Lie
algebra g of a reductive group over an algebraically closed field of positive characteristic.
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In [16] these conjectures were proved for g = gln and for g = sln under the condition that
n is non-zero in the field.

The second conjecture was made by Braun and Hajarnavis in [1] for the universal en-
veloping algebra U(g) and suggested for U = Uε,P (g). There it was also proved that Z is
locally a UFD. In Section 3 below, this conjecture is proved for sln under the condition that
l is a power of a prime (�= 2). The auxiliary results and Step 1 of the proof of Theorem 4,
however, hold without extra assumptions on l.

The first conjecture was posed as a question by J. Alev for the universal enveloping
algebra U(g). It can be considered as a first step towards a proof of a version of the
Gelfand–Kirillov conjecture for U . Indeed the Gelfand–Kirillov conjecture for gln and
sln in positive characteristic1 was proved recently by J.-M. Bois in his PhD thesis [4] using
results in [16] on the centres of their universal enveloping algebras (for sln it was required
that n �= 0 in the field). It should be noted that the Gelfand–Kirillov conjecture for U(g) in
characteristic 0 (and in positive characteristic) is still open for g not of type A.

As in [16], a certain semi-invariant d for a maximal parabolic subgroup of GLn will play
an important rôle. Later we learned that (a version of) this semi-invariant already appeared
before in the literature, see [10]. For quantum versions, see [12,13].

1. Preliminaries

In this section we recall some basic results, mostly from [8], that are needed to prove the
main results (Theorems 3 and 4) of this article. Short proofs are added in case the results
are not explicitly stated in [8].

1.1. Elementary definitions

Let g be a simple finite-dimensional Lie algebra over C with Cartan subalgebra h, let Φ

be its root system relative to h, let (α1, . . . , αr) be a basis of Φ and let (·|·) be the symmetric
bilinear form on h∗ which is invariant for the Weyl group W and satisfies (α|α) = 2 for all
short roots α. Put di = (αi |αi)/2. The root lattice and the weight lattice of Φ are denoted
by respectively Q and P . Note that (·|·) is integral on Q × P .

Mostly we will be in the situation where g = sln. In this case r = n − 1 and all the di

are equal to 1. We then take h the subalgebra that consists of the diagonal matrices in sln

and we take αi = A �→ Aii − Ai+1 i+1 :h → C.
Let l be an odd integer > 1 and coprime to all the di , let ε be a primitive lth root of

unity and let Λ be a lattice between Q and P . Let U = Uε,Λ(g) be the quantised universal
enveloping algebra of g at the root of unity ε defined in [8] and denote the centre of U by Z.
Since U has no zero divisors (see [7, 1.6–1.8]), Z is an integral domain. Let U+,U−,U0

be the subalgebras of U generated by respectively the Ei , the Fi and the Kλ with λ ∈ Λ.
Then the multiplication U− ⊗ U0 ⊗ U+ → U is an isomorphism of vector spaces. We

1 The Gelfand–Kirillov conjecture for a Lie algebra g over K states that the fraction field of U(g) is isomorphic
to a Weyl skew field Dn(L) over a purely transcendental extension L of K .
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identify U0 with the group algebra CΛ of Λ. Note that W acts on U0, since it acts on Λ.
Let T be the complex torus Hom(Λ,C×). Then T can be identified with Maxspec(U0) =
HomC- Alg(U

0,C) and for the action of T on U0 = C[T ] by translation we have t · Kλ =
t (λ)Kλ.

The braid group B acts on U by automorphisms. See [8, 0.4]. The subalgebra Z0 of
U is defined as the smallest B-stable subalgebra containing the elements Kl

λ, λ ∈ Λ, and
El

i ,F
l
i , i = 1, . . . , r . We have Z0 ⊆ Z. Put zλ = Kl

λ and let Z0
0 be the subalgebra of Z0

spanned by the zλ. Then the identification of U0 with CΛ gives an identification of Z0
0

with ClΛ. If we replace Kλ by zλ in foregoing remarks, then we obtain an identification of
T with Maxspec(Z0

0). Put Z±
0 = Z0 ∩ U±. Then the multiplication Z−

0 ⊗ Z0
0 ⊗ Z+

0 → Z0
is an isomorphism (of algebras). See e.g. [7, 3.3].

1.2. The Harish-Chandra centre Z1 and the quantum restriction theorem

Let Q∨ be the dual root lattice, that is, the Z-span of the dual root system Φ∨. We
have Q∨ ∼= P ∗ ↪→ Λ∗. Denote the image of Q∨ under the homomorphism f �→ (λ �→
(−1)f (λ)) :Λ∗ → T by Q∨

2 . Then the elements �= 1 of Q∨
2 are of order 2 and U0Q∨

2 =
C(Λ ∩ 2P). Since Q∨

2 is W -stable, we can form the semi-direct product W̃ = W � Q∨
2

and then U0W̃ = (C(Λ ∩ 2P))W .
Let h′ :U = U− ⊗U0 ⊗U+ → U0 be the linear map taking x ⊗u⊗y to εU (x)uεU (y),

where εU is the counit of U . Then h′ is a projection of U onto U0. Furthermore h′(Z0) =
Z0

0 = ClΛ and h′|Z0 :Z0 → Z0
0 has a similar description as h′ and is a homomorphism

of algebras. Define the shift automorphism γ of U0Q∨
2 by setting γ (Kλ) = ε(ρ|λ)Kλ for

λ ∈ Λ ∩ 2P . Here ρ is the half sum of the positive roots. Note that γ = id on Z
0Q∨

2
0 =

Cl(Λ ∩ 2P). In [8, p. 174] and [7, §2], there was constructed an injective homomorphism
h̄ :U0W̃ → Z, whose image is denoted by Z1, such that h′(Z1) ⊆ U0Q∨

2 and the inverse

h :Z1
∼−→ U0W̃

of h̄ is equal to γ −1 ◦ h′. Note that h = h′ on Z0 ∩ Z1 and that h′|Z1 is a homomorphism
of algebras. Since Ker(h′) is stable under left and right multiplication by elements of U0

and under multiplication by elements of Z, we can conclude that the restriction of h′ to the
subalgebra generated by Z0 and Z1 is a homomorphism of algebras.

From now on we assume that Λ = P . Let G be the simply connected almost simple
complex algebraic group with Lie algebra g and let T be a maximal torus of G. We identify
Φ and W with the root system and the Weyl group of G relative to T . Note that the
character group X(T ) of T is equal to P . In case g = sln we take T the subgroup of
diagonal matrices in SLn.

1.3. Generators for C[G]G and Z1

We denote the fundamental weights corresponding to the basis (α1, . . . , αr) by
�1, . . . ,�r . As is well known, they form a basis of P . Let C[G] be the algebra of reg-
ular functions on G. Then the restriction homomorphism C[G] → C[T ] = CP induces



428 R. Tange / Journal of Algebra 301 (2006) 425–445
an isomorphism C[G]G ∼−→ C[T ]W = (CP)W , see [17, §6]. For λ ∈ P denote the basis
element of CP corresponding to λ by e(λ), denote the W -orbit of λ by W · λ and put
sym(λ) = ∑

μ∈W ·λ e(μ). Then the sym(�i), i = 1, . . . , r , are algebraically independent

generators of (CP)W . See [3, No. VI.3.4, Théorème 1].
For a field K , we denote the vector space of all n × n matrices over K by Matn =

Matn(K). Now assume that K = C. In this section we denote the restriction to SLn of
the standard coordinate functionals on Matn by ξij , 1 � i, j � n. Furthermore, for i ∈
{1, . . . , n − 1}, si ∈ C[SLn] is defined by si(A) = tr(

∧i
A), where

∧i
A denotes the ith

exterior power of A and tr denotes the trace. Then �i = (ξ11 · · · ξii)|T and therefore

sym(�i) = si |T , (∗)

the ith elementary symmetric function in the ξjj |T . See [16, 2.4].
In the general case we use the restriction theorem for C[G] and define si ∈ C[G]G

by (∗). So then s1, . . . , sr are algebraically independent generators of C[G]G.
Identifying U0 and CP , we have U0W̃ = (C2P)W . Put ui = h̄(sym(2�i)). Then

h(ui) = sym(2�i) and u1, . . . , ur are algebraically independent generators of Z1.

1.4. The cover π and the intersection Z0 ∩ Z1

Let Φ+ be the set of positive roots corresponding to the basis (α1, . . . , αr) of Φ and
let U+ respectively U− be the maximal unipotent subgroup of G corresponding to Φ+
respectively −Φ+. If g = sln, then U+ and U− consist of the upper respectively lower
triangular matrices in SLn with ones on the diagonal. Put O = U−T U+. Then O is a non-
empty open and therefore dense subset of G. Furthermore, the group multiplication defines
an isomorphism U− × T × U+ ∼−→ O of varieties. Put Ω = Maxspec(Z0).

In [7, (3.4)–(3.6)] there was constructed a group G̃ of automorphisms of Û = Ẑ0 ⊗Z0 U ,
where Ẑ0 denotes the algebra of holomorphic functions on the complex analytic variety Ω .
The group G̃ leaves Ẑ0 and Ẑ = Ẑ0 ⊗Z0 Z stable. In particular it acts by automorphisms on
the complex analytic variety Ω . In [8] this action is called the “quantum coadjoint action.”

In [8, §4] there was constructed an unramified cover π :Ω → O of degree 2r . I give a
short description of the construction of π . Put Ω± = Maxspec(Z±

0 ). Then we have Ω =
Ω− × T × Ω+. Now Z :Ω → T is defined as the projection on T , X :Ω → U+ and
Y :Ω → U− as the projection on Ω± followed by some isomorphism Ω± ∼−→ U± and π

is defined as YZ2X (multiplication in G).2 This means: π(x) = Y(x)Z(x)2X(x).
The following theorem says something about how G̃ and π are related to the “Harish-

Chandra centre” Z1 and the conjugation action of G on C[G]. For more precise statements
see [8, 5.4, 5.5 and §6].

Theorem 1. [8, Proposition 6.3, Theorem 6.7] Consider π as a morphism to G. Then the
comorphism πco : C[G] → Z0 is injective and the following holds:

2 In [8] Z2 is denoted by Z. The notation here comes from [9]. The centre of U is denoted by the same letter,
but this will cause no confusion.
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(i) ZG̃ = Z1.3

(ii) πco induces an isomorphism C[G]G ∼−→ ZG̃
0 = Z0 ∩ Z1.

(iii) The monomorphism (CP)W
∼−→ (CP)W obtained by combining the isomorphism in

(ii) with the restriction homomorphism C[G] → C[T ] = CP and h :Z1 → U0 = CP ,
is given by x �→ 2lx :P → P . In particular h(Z0 ∩ Z1) = (C2lP )W .

I will give the proof of (iii). If we identify Z0
0 with C[T ], then the homomorphism

h′|Z0 :Z0 → Z0
0 is the comorphism of a natural embedding T ↪→ Ω . Now we have a com-

mutative diagram

G Ω
π

T T
t �→t2

Expressed in terms of the comorphisms this reads: (x �→ 2x) ◦ resG,T = resΩ,T ◦ πco,
where resG,T and resΩ,T are the restrictions to T and the comorphism of the morphism
between the tori is denoted by its restrictions to the character groups. Now we identify U0

with C[T ]. Composing both sides on the left with x �→ lx and using (x �→ lx) ◦ resΩ,T =
h′|Z0 :Z0 → U0 = CP we obtain (x �→ 2lx) ◦ resG,T = h′ ◦ πco. If we restrict both sides
of this equality to C[G]G, then we can replace h′ by h and we obtain the assertion.

1.5. Z0 and Z1 generate Z

Theorem 2. [8, Proposition 6.4, Theorem 6.4] Let u1, . . . , ur be the elements of Z1 defined
in Subsection 1.3. Then the following holds:

(i) The multiplication Z1 ⊗Z0∩Z1 Z0 → Z is an isomorphism of algebras.

(ii) Z is a free Z0-module of rank lr with the restricted monomials u
k1
1 · · ·ukr

r , 0 � ki < l,
as a basis.

I give a proof of (ii). In [8, Proposition 6.4] it is proved that (CP)W is a free (ClP )W -
module of rank lr with the restricted monomials (exponents < l) in the sym(�i) as a basis.
The same holds then of course for (C2P)W , (C2lP )W and the sym(2�i). But then the
same holds for Z1, Z0 ∩Z1 and the ui by (iii) of Theorem 1. So the result follows from (i).

Recall that Ω = Ω− × T × Ω+ and that Ω± ∼= U±. So Z0 is a polynomial algebra in
dim(g) variables with r variables inverted. In particular its Krull dimension (which coin-
cides with the transcendence degree of its field of fractions) is dim(g). The same holds then
for Z, since it is a finitely generated Z0-module.

3 G̃ is a group of automorphisms of the algebra Û and does not leave Z stable. However, SG̃ can be defined in
the obvious way for every subset S of Û .
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Let Z′
0 be a subalgebra of Z0 containing Z1 ∩ Z0. Then the multiplication Z1 ⊗Z0∩Z1

Z′
0 → Z′

0Z1 is an isomorphism of algebras by the above theorem. This gives us a way to
determine generators and relations for Z′

0Z1: Let s1, . . . , sr be the generators of C[G]G
defined in Subsection 1.3. Then πco(s1), . . . , π

co(sr ) are generators of Z0 ∩ Z1 = Z′
0 ∩ Z1

by Theorem 1(ii). Now assume that we have generators and relations for Z′
0. We use for Z1

the generators u1, . . . , ur defined in Subsection 1.3. For each i ∈ {1, . . . , r} we can express
πco(si) as a polynomial gi in the generators of Z′

0 and as a polynomial fi in the uj . Then
the generators and relations for Z′

0 together with the ui and the relations fi = gi form a
presentation of Z′

0Z1.4

The fi can be determined as follows. Write sym(l�i) as a polynomial fi in the
sym(�j ). Then sym(2l�i) is the same polynomial in the sym(2�j) and πco(si) =
fi(u1, . . . , ur ) by Theorem 1(iii).

Note that πco(C[O]) = Z−
0 C(2lP )Z+

0 and that Z0 = πco(C[O])[z�1 , . . . , z�r ].
Now assume that G = SLn. For f ∈ C[SLn] denote f ◦ π by f̃ and put Z̃0 =

πco(C[SLn]). Then Z̃0 is generated by the ξ̃ij ; it is a copy of C[SLn] in Z0. Now O
consists of the matrices A ∈ SLn that have an LU-decomposition (without row permu-
tations), that is, whose principal minors Δ1(A), . . . ,Δn−1(A) are non-zero. So C[O] =
C[SLn][Δ−1

1 , . . . ,Δ−1
n−1], πco(C[O]) = Z̃0[Δ̃−1

1 , . . . , Δ̃−1
n−1] and

Z0 = Z̃0[z�1 , . . . , z�n−1 ]
[
Δ̃−1

1 , . . . , Δ̃−1
n−1

]
.

Let prO,T be the projection of O on T . An easy computation shows that Δi |O =
(ξ11 · · · ξii) ◦ prO,T = �i ◦ prO,T for i = 1, . . . , n − 1.5 So Δ̃i = �i ◦ prO,T ◦ π = �i ◦
(t �→ t2)◦prΩ,T = 2�i ◦prΩ,T = z2

�i
. In Subsection 3.3 we will determine generators and

relations for Z′
0Z1, where Z′

0 = Z̃0[z�1 , . . . , z�n−1 ] using the method mentioned above.

2. Rationality

We use the notation of Section 1 with the following modifications. The func-
tions ξij , 1 � i, j � n, now denote the standard coordinate functionals on Matn and
for i ∈ {1, . . . , n}, si ∈ K[Matn] is defined by si(A) = tr(

∧i
A) for A ∈ Matn. Then

det(x id−A) = xn + ∑n
i=1(−1)isi(A)xn−i . This notation is in accordance with [16].

For f ∈ C[Matn] we denote its restriction to SLn by f ′ and we denote πco(f ′) by f̃ .
So now s′

1, . . . , s
′
n−1 and ξ ′

ij are the functions s1, . . . , sn−1 and ξij of Subsection 1.3 and

the ξ̃ij are the same.
To prove the theorem below we need to look at the expressions of the functions si in

terms of the ξij . We use that those equations are linear in ξ1n, ξ2n, . . . , ξnn. The treatment

4 This method was also used by Krylyuk in [14] to determine generators and relations for the centre of the
universal enveloping algebra U(g) of g. Our homomorphism πco : C[G] → Z0 plays the rôle of Krylyuk’s G-
equivariant isomorphism η :S(g)(1) → Zp , where we use the notation of [16].

5 For two n × n matrices A and B we have
∧k(AB) = ∧k(A)

∧k(B). From this it follows that if either A is
lower triangular or B is upper triangular, then Δk(AB) = Δk(A)Δk(B).
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is completely analogous to that in [16, 4.1] (we use the same symbols R, M , d and xa) to
which we refer for more explanation. Let R be the Z-subalgebra of C[Matn] generated by
all ξij with j �= n.

Let ∂ij denote differentiation with respect to the variable ξij and set

M =

⎡
⎢⎢⎣

∂1n(s1) ∂2n(s1) . . . ∂nn(s1)

∂1n(s2) ∂2n(s2) . . . ∂nn(s2)
...

...
. . .

...

∂1n(sn) ∂2n(sn) . . . ∂nn(sn)

⎤
⎥⎥⎦ , c =

⎡
⎢⎢⎣

ξ1n

ξ2n
...

ξnn

⎤
⎥⎥⎦ , s =

⎡
⎢⎢⎣

s1
s2
...

sn

⎤
⎥⎥⎦ .

Then the matrix M has entries in R and the following vector equation holds:

M · c = s + r, where r ∈ Rn. (1)

We denote the determinant of M by d . For a = (a1, . . . , an) ∈ Kn we set

xa =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 0 an

1 · · · 0 0 an−1
...

. . .
...

...
...

0 · · · 1 0 a2
0 · · · 0 1 a1

⎤
⎥⎥⎥⎥⎦ .

Then the minimal polynomial of xa equals xn − ∑n
i=1 aix

n−i , det(xa) = (−1)n−1an and
d(xa) = 1 (compare Lemma 3 in [16]).

Theorem 3. Z has a rational field of fractions.

Proof. Denote the field of fractions of Z by Q(Z). From Subsection 1.5 it is clear that
Q(Z) has transcendence degree dim(sln) = n2 − 1 over C and that it is generated as a field
by the n2 + 2(n− 1) variables ξ̃ij , u1, . . . , un−1 and z�1 , . . . , z�n−1 . To prove the assertion
we will show that Q(Z) is generated by the n2 −1 elements ξ̃ij , i �= j , j �= n, u1, . . . , un−1

and z�1 , . . . , z�n−1 . We will first eliminate the n generators ξ̃1n, . . . , ξ̃nn and then the n− 1
generators ξ̃11, . . . , ξ̃n−1n−1.

Applying the homomorphism f �→ f̃ = πco ◦ (f �→ f ′) : C[Matn] → Z0 to both sides
of (1) we obtain the following equations in the ξ̃ij and s̃1, . . . , s̃n−1

M̃ · c̃ = s̃ + r̃, where r̃ ∈ R̃n. (2)

Here M̃, c̃, s̃, r̃ have the obvious meaning, except that we put the last component of s̃ and r̃
equal to 0 respectively 1, and R̃ is the Z-subalgebra of Z0 generated by all ξ̃ij with j �= n.
Choosing a such that an = (−1)n−1 we have xa ∈ SLn. Since d(xa) = 1, we have d ′ �= 0
and therefore det(M̃) = d̃ �= 0. Furthermore, for i = 1, . . . , n − 1, (s̃)i = s̃i ∈ Z0 ∩ Z1 and
Z1 is generated by u1, . . . , un−1. It follows that ξ̃1n, . . . , ξ̃nn are in the subfield of Q(Z)

generated by the ξ̃ij with j �= n and u1, . . . , un−1.
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Now we will eliminate the generators ξ̃11, . . . , ξ̃n−1 n−1. We have

z2
�1

= Δ̃1 = ξ̃11

and for k = 2, . . . , n − 1 we have, by the Laplace expansion rule,

z2
�k

= Δ̃k = ξ̃kkΔ̃k−1 + tk = ξ̃kkz
2
�k−1

+ tk,

where tk is in the Z-subalgebra of Z generated by the ξ̃ij with i, j � k and (i, j) �= (k, k).
It follows by induction on k that for k = 1, . . . , n − 1, ξ̃11, . . . , ξ̃kk are in the subfield of
Q(Z) generated by the z�i

with i � k and the ξ̃ij with i, j � k and i �= j . �

3. Unique factorisation

Recall that Nagata’s lemma asserts the following: If x is a non-zero prime element
of a Noetherian integral domain S such that S[x−1] is a UFD, then S is a UFD. See
[11, Lemma 19.20]. Here an element is called prime if it generates a prime ideal. The
non-zero prime elements of an integral domain are always irreducible and in a UFD the
converse holds. In Theorem 4 we will see that, by Nagata’s lemma, it suffices to show that
the algebra Z/(d̃) is an integral domain in order to prove that Z is a UFD. To prove this
we will show by induction that the two sequences of algebras (to be defined later):

K[SLn]/(d ′) ∼= Ā(K) = B̄0,0(K) ⊆ B̄0,1(K) ⊆ · · · ⊆ B̄0,n−1(K) = B̄0(K)

in characteristic p and

B̄0(C) ⊆ B̄1(C) ⊆ · · · ⊆ B̄n−1(C) = B̄(C)

over C, consist of integral domains. Lemma 2 is, among other things, needed to show
that Ā(K) ∼= K[SLn]/(d ′) is an integral domain. Lemmas 3 and 4 are needed to obtain
bases over Z (see Proposition 1̄), which, in turn, is needed to pass to fields of positive
characteristic and to apply mod p reduction (see Lemma 6).

3.1. The case n = 2

In this subsection we show that the centre of Uε,P (sl2) is always a UFD, without any
extra assumptions on l. The standard generators for U = Uε,P (sl2) are E,F,K� and K−1

� .
Put K = Kα = K2

� , z1 = z� = Kl
� , z = zα = z2

1 = Kl . Furthermore, following [8, 3.1],
we put c = (ε − ε−1)l , x = −cz−1El , y = cF l . Then x, y and z1 are algebraically inde-
pendent over C and Z0 = C[x, y, z1][z−1

1 ] (see [8, §3]).

We have U0 = C[K� ,K−1
� ] and U0W̃ = C[K,K−1]W = C[K + K−1]. Identifying U0

and CP , we have sym(2�) = K + K−1 and sym(2l�) = z + z−1. Put u = h̄(sym(2�)).
By the restriction theorem for U , Z1 is a polynomial algebra in u. Denote the trace map on
Mat2 by tr. Then tr |T = sym(�). By the restriction theorem for C[G] and Theorem 1(ii),
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t̃r generates Z0 ∩ Z1. Furthermore t̃r = h̄(z + z−1), by Theorem 1(iii). Let f ∈ C[u] be the
polynomial with z + z−1 = f (K + K−1). Then t̃r = f (u). From the formulas in [8, 5.2] it
follows that t̃r = −zxy + z + z−1.

By the construction from Subsection 1.5 (we take Z′
0 = Z0), Z is isomorphic to the

quotient of the localised polynomial algebra C[x, y, z1, u][z−1
1 ] by the ideal generated by

−z2
1xy + z2

1 + z−2
1 − f (u). Clearly x,u and z1 generate the field of fractions of Z. In

particular they are algebraically independent. So Z[x−1] is isomorphic to the localised
polynomial algebra C[x, z1, u][z−1

1 , x−1] and therefore a UFD. By Nagata’s lemma it suf-
fices to show that x is a prime element in Z. But Z/(x) is isomorphic to the quotient
of C[y, z1, u][z−1

1 ] by the ideal generated by z2
1 + z−2

1 − f (u). This ideal is also gener-
ated by z4

1 − f (u)z2
1 + 1. So it suffices to show that z4

1 − f (u)z2
1 + 1 is irreducible in

C[y, z1, u][z−1
1 ]. From the fact that f is of odd degree l > 0 (see e.g. Lemma 4 below),

one easily deduces that z4
1 − f (u)z2

1 + 1 is irreducible in C[z1, u] and therefore also in
C[y, z1, u]. Clearly z4

1 − f (u)z2
1 + 1 is not invertible in C[y, z1, u][z−1

1 ], so it is also irre-
ducible in this ring.

3.2. SLn and the function d

The next lemma is needed for the proof of Theorem 4. The Jacobian matrix below con-
sists of the partial derivatives of the functions in question with respect to the variables ξij .

Lemma 1. If n � 3, then there exists a matrix A ∈ SLn(Z) such that d(A) = 0 and such
that some 2n-th order minor of the Jacobian matrix of (s1, . . . , sn, d,Δ1, . . . ,Δn−1) is ±1
at A.

Proof. The computations below are very similar to those in [16, Section 6]. We denote by
X the (n × n)-matrix (ξij ) and for an (n × n)-matrix B = (bij ) and Λ1,Λ2 ⊆ {1, . . . , n}
we denote by BΛ1,Λ2 the matrix (bij )i∈Λ1,j∈Λ2 , where the indices are taken in the natural
order.

In the computations below we will use the following two facts:
For Λ1,Λ2 ⊆ {1, . . . , n} with |Λ1| = |Λ2| we have

∂ij

(
det(XΛ1,Λ2)

) =
{

(−1)n1(i)+n2(j) det(XΛ1\{i},Λ2\{j}) when (i, j) ∈ (Λ1 × Λ2),

0 when (i, j) /∈ (Λ1 × Λ2),

where n1(i) denotes the position in which i occurs in Λ1 and similarly for n2(j).
For k � n we have sk = ∑

Λ det(XΛ,Λ) where the sum ranges over all k-subsets Λ of
{1, . . . , n}.
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Put α = ((1 1), (2 2), (2 3), . . . , (2n−1), (nn), (n−1n), . . . , (2n), (2 1), (1 2)), and let
αi denote the ith component of α. We let A be the following (n × n)-matrix:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 (−1)n

0 1 0 · · · 0 0
1 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The columns of the Jacobian matrix are indexed by the pairs (i, j) with 1 � i, j � n. Let
Mα be the 2n-square submatrix of the Jacobian matrix consisting of the columns with
indices from α. By permuting in A the first row to the last position and interchanging the
first two columns, we see that det(A) = 1. We will show that d(A) = 0 and that the minor
dα := det(Mα) of the Jacobian matrix is ±1 at A.

First we consider the Δk , k ∈ {1, . . . , n − 1}. By inspecting the matrix A and using the
fact that ∂ijΔk = 0 if i > k or j > k, we deduce the following facts:

(∂2iΔk)(A) =
{±1 if i = k,

0 if i > k,
for i, k ∈ {1, . . . , n − 1}, i �= 1,

(∂11Δ1)(A) = 1,

(∂12Δk)(A) = (∂21Δk)(A) = 0 for all k ∈ {1, . . . , n − 1},

and

(∂inΔk)(A) = 0 for all k ∈ {1, . . . , n − 1} and all i ∈ {1, . . . , n}.

Now we consider the sk . Let i ∈ {1, . . . , n} and let Λ ⊆ {1, . . . , n}. Assume that
∂in(det(XΛ,Λ)) is non-zero at A. Then we have:

• i, n ∈ Λ;
• j ∈ Λ ⇒ j − 1 ∈ Λ for all j with 4 � j � n and j �= i, since otherwise there would be

a zero row (in XΛ\{i},Λ\{n}(A) = AΛ\{i},Λ\{n});
• j ∈ Λ ⇒ j +1 ∈ Λ for all j with 3 � j � n−1, since otherwise there would be a zero

column.

First assume that i � 3 and that |Λ| � n − i + 1. Then it follows that Λ = {i, . . . , n} and
that ∂in(det(XΛ,Λ))(A) = ±1.

Next assume that i = 2. Then it follows that either Λ = {2, . . . , n} or Λ = {1, . . . , n}.
In the first case we have ∂in(det(XΛ,Λ))(A) = (−1)1+n−1 = (−1)n. In the second case we
have ∂in(det(XΛ,Λ))(A) = (−1)2+n = (−1)n.

Now assume that i = 1. Then it follows that either Λ = {1,3, . . . , n} or Λ = {1, . . . , n}.
In the first case we have ∂in(det(XΛ,Λ))(A) = (−1)1+n−1 = (−1)n. In the second case we
have ∂in(det(XΛ,Λ))(A) = (−1)1+n · (−1) = (−1)n.
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So for i, k ∈ {1, . . . , n} we have:

(∂insk)(A) =

⎧⎪⎨
⎪⎩

±1 if i � 3 and i + k = n + 1,

0 if i � 3 and i + k < n + 1,

(−1)n if i ∈ {1,2} and k ∈ {n − 1, n},
0 if i ∈ {1,2} and k < n − 1.

It follows from the above equalities that in M(A) the first 2 columns are equal. So d(A) =
det(M(A)) = 0.

Let Λ ⊆ {1, . . . , n}. Assume that ∂12(det(XΛ,Λ)) is non-zero at A. Then 1,2 ∈ Λ and
the first row is zero. A contradiction. So ∂12(det(XΛ,Λ)) is zero at A. Now assume that
∂21(det(XΛ,Λ)) is non-zero at A. Then

• 1,2 ∈ Λ;
• n ∈ Λ, since otherwise the first row would be zero;
• j ∈ Λ ⇒ j − 1 ∈ Λ for all j with 4 � j � n, since otherwise there would be a zero

row.

So Λ = {1, . . . , n} and ∂in(det(XΛ,Λ))(A) = ±1. Thus we have (∂12sk)(A) = 0 for all
k ∈ {1, . . . , n} and

(∂21sk)(A) =
{±1 if k = n,

0 otherwise.

Finally, we consider the function d . Let i ∈ {1, . . . , n}, let Λ ⊆ {1, . . . , n} and assume
that ∂12∂in(det(XΛ,Λ)) is non-zero at A. Then we have:

• 1,2, i, n ∈ Λ and i �= 1;
• i = 2, since otherwise the first row would be zero;
• j ∈ Λ ⇒ j − 1 ∈ Λ for all j with 4 � j � n, since otherwise there would be a zero

row.

It follows that i = 2, Λ = {1, . . . , n} and ∂12∂in(det(XΛ,Λ)) = ±1. So for i, k ∈ {1, . . . , n}
we have:

(∂12∂insk)(A) =
{±1 if (i, k) = (2, n),

0 if (i, k) �= (2, n).

We have

d =
∑

π∈Sn

sgn(π)∂π(1)n(s1) · · · ∂π(n)n(sn). (3)

So, by the above,

(∂12d)(A) =
(∑

sgn(π)∂π(1)n(s1)∂π(2)n(s2) · · · ∂π(n−1)n(sn−1)∂12∂2n(sn)
)
(A),
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where the sum is over all π ∈ Sn with π(n) = 2. From what we know about the
∂insk we deduce that the only permutation that survives in the above sum is given by
(π(1), . . . , π(n)) = (n,n − 1, . . . ,3,1,2) and that (∂12d)(A) = ±1.

If we permute the rows of Mα(A) in the order given by Δ1, . . . ,Δn−1, s1, . . . , sn, d and
take the columns in the order given by α, then the resulting matrix is lower triangular with
±1’s on the diagonal. So we can conclude that dα(A) = det(Mα(A)) = ±1. �

In the remainder of this subsection K denotes an algebraically closed field.

Lemma 2.

(i) d is an irreducible element of K[Matn].
(ii) K[SLn] is a UFD.

(iii) The invertible elements of K[SLn] are the non-zero scalars.
(iv) d ′,Δ′

1, . . . ,Δ
′
n−1 is are mutually inequivalent irreducible elements of K[SLn].

Proof. (i) The proof of this is completely analogous to that of Proposition 3 in [16]. One
now has to work with the maximal parabolic subgroup P of GLn that consists of the in-
vertible matrices (aij ) with ani = 0 for all i < n. The element d is then a semi-invariant of
P with the weight det · ξ−n

nn (the restriction of this weight to the maximal torus of diagonal
matrices is n�n−1).

(ii) In fact it is well known that the algebra of regular functions K[G] of a simply
connected semi-simple algebraic group G over K is a UFD. See [15, the corollary to
Proposition 1].

(iii) and (iv). Since Δ′
n−1 is not everywhere non-zero on SLn, it is not invertible in

K[SLn]. From the Laplace expansion for det with respect to the last row or the last column
it is clear that we can eliminate ξnn using the relation det = 1, if we make Δn−1 in-
vertible. So we have an isomorphism K[SLn][Δ′−1

n−1] ∼= K[(ξij )(i,j) �=(n,n)][Δ−1
n−1]. It maps

d ′,Δ′
1, . . . ,Δ

′
n−1 to respectively d,Δ1, . . . ,Δn−1, since these polynomials do not con-

tain the variable ξnn. The invertible elements of K[(ξij )(i,j) �=(n,n)][Δ−1
n−1] are the elements

αΔk
n−1, α ∈ K \ {0}, k ∈ Z, since Δn−1 is irreducible in K[(ξij )(i,j) �=(n,n)]. So the in-

vertible elements of K[SLn][Δ′−1
n−1] are the elements αΔ′k

n−1, α ∈ K \ {0}, k ∈ Z. This
shows that Δ′

n−1 is irreducible in K[SLn], since otherwise there would be more invert-

ible elements in K[SLn][Δ′−1
n−1]. So the invertible elements of K[SLn] are the non-zero

scalars. Since d and the Δi are not scalar multiples of each other, all that remains is to
show that d ′ and Δ′

1, . . . ,Δ
′
n−2 are irreducible. We only do this for d ′, the argument for

the Δ′
i is completely similar. Since d is prime in K[(ξij )(i,j) �=(n,n)] and d does not divide

Δn−1, it follows that d is prime in K[(ξij )(i,j) �=(n,n)][Δ−1
n−1] and therefore that d ′ is prime

in K[SLn][Δ′−1
n−1]. To show that d ′ is prime in K[SLn] it suffices to show that for every

f ∈ K[SLn], Δ′
n−1f ∈ (d ′) implies f ∈ (d ′). So assume that

Δ′ f = gd ′ (∗)
n−1
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for some f,g ∈ K[SLn]. If we take a ∈ Kn such that an = (−1)n−1, then we have xa ∈
SLn, d ′(xa) = 1 and Δ′

n−1(xa) = 0. So Δ′
n−1 does not divide d ′. But then Δ′

n−1 divides g,
since Δ′

n−1 is irreducible. Cancelling a factor Δ′
n−1 on both sides of (∗), we obtain that

f ∈ (d ′). �
3.3. Generators and relations and a Z-form for Z̃0[z�1 , . . . , z�n−1 ]Z1

For the basics about monomial orderings and Gröbner bases I refer to [5].

Lemma 3. If we give the monomials in the variables ξij the lexicographic monomial or-
dering for which ξnn > ξnn−1 > · · · > ξn1 > ξn−1n > · · · > ξn−1 1 > · · · > ξ11, then det has
leading term ±ξnn · · · ξ22ξ11 and d has leading term ±ξn−1

nn−1 · · · ξ2
32ξ21.

Proof. I leave the proof of the first assertion to the reader. For the second assertion we use
the notation and the formulas of Subsection 3.2. The leading term of a non-zero polyno-
mial f is denoted by LT(f ). Let i ∈ {1, . . . , n} and Λ ⊆ {1, . . . , n} with |Λ| = k � 2 and
assume that ∂in(det(XΛ,Λ)) �= 0. Then i, n ∈ Λ. Now we use the fact that no monomial in
∂in(det(XΛ,Λ)) contains a variable with row index equal to i or with column index equal
to n or a product of two variables which have the same row or column index.

First assume that i > n − k + 1. Then

LT
(
∂in

(
det(XΛ,Λ)

))
� ±ξnn−1 · · · ξi+1 iξi−1 i−1 · · · ξn−k+1n−k+1

with equality if and only if Λ = {n,n − 1, . . . , n − k + 1}. Now assume that i = n − k + 1.
Then

LT
(
∂in

(
det(XΛ,Λ)

))
� ±ξnn−1 · · · ξn−k+2n−k+1

with equality if and only if Λ = {n,n−1, . . . , n−k+1}. Finally assume that i < n−k+1.
Then

LT
(
∂in

(
det(XΛ,Λ)

))
� ±ξnn−1 · · · ξn−k+3n−k+2ξn−k+2 i

with equality if and only if Λ = {n,n − 1, . . . , n − k + 2, i}.
So for i, k ∈ {1, . . . , n} with k � 2 we have:

LT(∂insk) =
{±ξnn−1 · · · ξi+1 iξi−1 i−1 · · · ξn−k+1n−k+1 if i + k > n + 1,

±ξnn−1 · · · ξn−k+2n−k+1 if i + k = n + 1,

±ξnn−1 · · · ξn−k+3n−k+2ξn−k+2 i if i + k < n + 1.

In particular LT(∂insk) � ±ξnn−1 · · · ξn−k+1n−k+1 with equality if and only if i + k =
n + 1. But then, by Eq. (3), LT(d) = LT(∂nns1)LT(∂n−1ns2) · · ·LT(∂1nsn) =
±ξn−1

nn−1 · · · ξ2
32ξ21. �

Recall that the degree reverse lexicographical ordering on the monomials uα =
u

α1
1 · · ·uαk

k in the variables u1, . . . , uk is defined as follows: uα > uβ if deg(uα) > deg(uβ)

or deg(uα) = deg(uβ) and αi < βi for the last index i with αi �= βi .
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Lemma 4. Let fi ∈ Z[u1, . . . , un−1] be the polynomial such that sym(l�i) = fi(sym(�1),

. . . , sym(�n−1)). If we give the monomials in the ui the degree reverse lexicographic
monomial ordering for which u1 > · · · > un−1, then fi has leading term ul

i . Furthermore,
the monomials that appear in fi − ul

i are of total degree � l and have exponents < l.6

Proof. Let σi be the ith elementary symmetric function in the variables x1, . . . , xn and let
λi ∈ P = X(T ) be the character A �→ Aii of T . Then sym(�i) = σi(e(λ1), . . . , e(λn)) for
i ∈ {1, . . . , n−1}. So the fi can be found as follows. For i ∈ {1, . . . , n−1}, determine Fi ∈
Z[u1, . . . , un] such that σi(x

l
1, . . . , x

l
n) = Fi(σ1, . . . , σn). Then fi = Fi(u1, . . . , un−1,1).

It now suffices to show that for i ∈ {1, . . . , n − 1}, Fi − ul
i is a Z-linear combination of

monomials in the uj that have exponents < l, are of total degree � l and that contain some
uj with j > i (the monomials that contain un will become of total degree < l when un is
replaced by 1).

Fix i ∈ {1, . . . , n − 1}. Consider the following properties of a monomial in the xj :

(x1) the monomial contains at least i + 1 variables;
(x2) the exponents are � l;
(x3) the number of exponents equal to l is � i;

and the following properties of a monomial in the uj :

(u1) the monomial contains a variable uj for some j > i;
(u2) the total degree is � l;
(u3) the exponents are < l.

Let h be a symmetric polynomial in the xi and let H be the polynomial in the ui such that
h = H(σ1, . . . , σn). Give the monomials in the xi the lexicographic monomial ordering for
which x1 > · · · > xn. We will show by induction on the leading monomial of h that if each
monomial that appears in h has property (x1) respectively property (x2) respectively prop-
erties (x1), (x2) and (x3), then each monomial that appears in H has property (u1) respec-
tively property (u2) respectively properties (u1), (u2) and (u3). Let xα := x

α1
1 · · ·xαn

n be the
leading monomial of h. Then α1 � α2 � · · · � αn. Put β = (α1 − α2, . . . , αn−1 − αn,αn).
Let k be the last index for which αk �= 0. Then β = (α1 − α2, . . . , αk−1 − αk,αk,0, . . . ,0).
If xα has property (x1), then k � i +1, uβ has property (u1) and the monomials that appear
in σβ have property (x1), since σk appears in σβ .

If xα has property (x2), then α1 � l, uβ is of total degree α1 � l and the monomials that
appear in σβ have exponents � β1 +· · ·+βk = α1 � l. Now assume that xα has properties
(x1), (x2) and (x3). For j < k we have βj = αj − αj+1 < l, since αj+1 �= 0. So we have
to show that βk = αk < l. If αk were equal to l, then we would have α1 = · · · = αk = l,
by (x2). This contradicts (x3), since we have k � i + 1 by (x1). Finally we show that the

6 So our fi are related to the polynomials Pi = xl
i
− ∑

μ diμxμ from the proof of Proposition 6.4 in [8] as
follows: Pi = fi(x1, . . . , xn−1) − sym(l�i). In particular di0 = sym(l�i) and diμ ∈ Z for all μ ∈ P \ {0} (we
are, of course, in the situation that g = sln).
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monomials that appear in σβ have property (x3). If α1 < l, then all these monomials have
exponents < l. So assume α1 = l. Let j be the smallest index for which βj �= 0. Then the
number of exponents equal to l in a monomial that appears in σβ is � j . On the other hand,
α1 = · · · = αj = l. So we must have j � i, since xα has property (x3).

Now we can apply the induction hypothesis to h−cσβ , where c is the leading coefficient
of h.

The assertion about Fi − ul
i now follows, because the monomials that appear in

σi(x
l
1, . . . , x

l
n) − σ l

i have the properties (x1), (x2) and (x3). �
From now on we denote z�i

by zi .7 Let Z[SLn] be the Z-subalgebra of C[SLn] gener-
ated by the ξ ′

ij and A be the Z-subalgebra of Z generated by the ξ̃ij . So A = πco(Z[SLn]).
Let B be the Z-subalgebra generated by the elements ξ̃ij , u1, . . . , un−1 and z1, . . . , zn−1.
For a commutative ring R we put A(R) = R ⊗Z A and B(R) = R ⊗Z B . Clearly we can
identify A(C) with Z̃0. In the proposition below “natural homomorphism” means a homo-
morphism that maps ξij to ξ̃ij and, if this applies, the variables ui and zi to the equally
named elements of Z. The polynomials fi below are the ones defined in Lemma 4.

Proposition 1. The following holds:

(i) The kernel of the natural homomorphism from the polynomial algebra
Z[(ξij )ij , u1, . . . , un−1, z1, . . . , zn−1] to B is generated by the elements
det − 1, f1 − s1, . . . , fn−1 − sn−1, z

2
1 − Δ1, . . . , z

2
n−1 − Δn−1.

(ii) The homomorphism B(C) → Z, given by the universal property of ring transfer, is
injective.

(iii) A is a free Z-module and B is a free A-module with the monomials
u

k1
1 · · ·ukn−1

n−1 z
m1
1 · · · zmn−1

n−1 , 0 � ki < l, 0 � mi < 2, as a basis.
(iv) A[z1, . . . , zn−1]∩Z1 = A∩Z1 = Z[s̃1, . . . , s̃n−1] and B ∩Z1 is a free A∩Z1-module

with the monomials u
k1
1 · · ·ukn−1

n−1 , 0 � ki < l, as a basis.

Proof. Let Z′
0 be the C-subalgebra of Z generated by the ξ̃ij and z1, . . . , zn−1. As we

have seen in Subsection 1.5, the zi satisfy the relations z2
i = Δ̃i . The Δ̃i are part of a

generating transcendence basis of the field of fractions Fr(Z̃0) of Z̃0 by arguments very
similar to those at the end of the proof of Theorem 3. This shows that the monomi-
als z

m1
1 · · · zmn−1

n−1 , 0 � mi < 2, form a basis of Fr(Z′
0) over Fr(Z̃0) and of Z′

0 over Z̃0.
It follows that the kernel of the natural homomorphism from the polynomial algebra
C[(ξij )ij , z1, . . . , zn−1] to Z′

0 is generated by the elements det − 1, z2
1 − Δ1, . . . , z

2
n−1 −

Δn−1. So we have generators and relations for Z′
0. By the construction from Subsec-

tion 1.5 we then obtain that the kernel I of the natural homomorphism from the polyno-
mial algebra C[(ξij )ij , u1, . . . , un−1, z1, . . . , zn−1] to Z′

0Z1 is generated by the elements
det − 1, f1 − s1, . . . , fn−1 − sn−1, z

2
1 − Δ1, . . . , z

2
n−1 − Δn−1.

7 In [8,9] zα is denoted by zi .

i
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Now we give the monomials in the variables (ξij )ij , u1, . . . , un−1, z1, . . . , zn−1 a mono-
mial ordering which is the lexicographical product of an arbitrary monomial ordering on
the monomials in the zi , the monomial ordering of Lemma 4 on the monomials in the ui

and the monomial ordering of Lemma 3 on the ξij .8 Then the ideal generators mentioned
above have leading monomials ξnn · · · ξ22ξ11, u

l
1, . . . , u

l
n−1, z

2
1, . . . , z

2
n−1 and the leading

coefficients are all ±1. Since the leading monomials have gcd 1, the ideal generators form
a Gröbner basis; see [5, Chapter 2, §9, Theorem 3 and Proposition 4], for example. Since
the leading coefficients are all ±1, it follows from the division with remainder algorithm
that the ideal of Z[(ξij )ij , u1, . . . , un−1, z1, . . . , zn−1] generated by these elements con-
sists of the polynomials in I that have integral coefficients and that it has the Z-span of
the monomials that are not divisible by any of the above leading monomials as a direct
complement. This proves (i) and (ii).

(iii) The canonical images of the above monomials form a Z-basis of B . These monomi-
als are the products of the monomials in the ξij that are not divisible by ξnn · · · ξ22ξ11 and
the restricted monomials mentioned in the assertion. The canonical images of the mono-
mials in the ξij that are not divisible by ξnn · · · ξ22ξ11 form a Z-basis of A.

(iv) As we have seen, the monomials with exponents < 2 in the zi form a basis of the Z̃0-
module Z′

0. So A[z1, . . . , zn−1] ∩ Z̃0 = A. Therefore, by Theorem 1(ii), A[z1, . . . , zn−1] ∩
Z1 = A ∩ Z1 = πco(Z[SLn]SLn). Now (ZP)W = Z[sym(�1), . . . , sym(�n−1)] (see
[3, No. VI.3.4, Theorem 1]) and the s′

i are in Z[SLn], so Z[SLn]SLn = Z[s′
1, . . . , s

′
n−1]

by the restriction theorem for C[SLn]. This proves the first assertion. From the proof of
Theorem 2 we know that the given monomials form a basis of Z1 over Z0 ∩Z1 and a basis
of Z over Z0. So an element of Z is in Z1 if and only if its coefficients with respect to this
basis are in Z0 ∩ Z1. The second assertion now follows from (iii). �

By (ii) of the above proposition we may identify B(C) with Z̃0[z1, . . . , zn−1]Z1 and
B(C)[Δ̃−1

1 , . . . , Δ̃−1
n−1] with Z.

Put Z̄ = Z/(d̃). For the proof of Theorem 4 we need a version for Z̄ of Proposition 1.
First we introduce some more notation. For u ∈ Z we denote the canonical image of u in Z̄

by ū. For f ∈ C[Matn] we write f̄ instead of ¯̃
f . Let Ā be the Z-subalgebra of Z̄ generated

by the ξ̄ij and let B̄ be the Z-subalgebra generated by the elements ξ̄ij , ū1, . . . , ūn−1 and

z̄1, . . . , z̄n−1. For a commutative ring R we put Ā(R) = R ⊗Z Ā and B̄(R) = R ⊗Z B̄ .

Proposition 1̄. The following holds:

(i) The kernel of the natural homomorphism from the polynomial algebra
Z[(ξij )ij , u1, . . . , un−1, z1, . . . , zn−1] to B̄ is generated by the elements
det − 1, d, f1 − s1, . . . , fn−1 − sn−1, z

2
1 − Δ1, . . . , z

2
n−1 − Δn−1.

(ii) The kernel of the natural homomorphism Z[Matn] → Ā is (det − 1, d).
(iii) The homomorphism B̄(C) → Z̄, given by the universal property of ring transfer, is

injective.

8 So the zi are greater than the ui which are greater than the ξij .
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(iv) Ā is a free Z-module and B̄ is a free Ā-module with the monomials
ū

k1
1 · · · ūkn−1

n−1 z̄
m1
1 · · · z̄mn−1

n−1 , 0 � ki < l, 0 � mi < 2, as a basis.

(v) The Ā-span of the monomials ū
k1
1 · · · ūkn−1

n−1 , 0 � ki < l, is closed under multiplication.

Proof. From Lemma 2(iii) we deduce that (A(C)[Δ̃−1
1 , . . . , Δ̃−1

n−1]d̃) ∩ A(C) = A(C)d̃ .

From this it follows, using the A(C)-basis of B(C), that (Zd̃) ∩ B(C), which is the kernel
of the natural homomorphism B(C) → Z̄, equals B(C)d̃ . From (i) and (ii) of Proposi-
tion 1 or from its proof it now follows that the kernel of the natural homomorphism from
the polynomial algebra C[(ξij )ij , u1, . . . , un−1, z1, . . . , zn−1] to Z̄ is generated by the ele-
ments det − 1, d, f1 − s1, . . . , fn−1 − sn−1, z

2
1 − Δ1, . . . , z

2
n−1 − Δn−1.

Again using the A(C)-basis of B(C) we obtain that (B(C)d̃) ∩ A(C) = A(C)d̃ . From
this it follows that the kernel of the natural homomorphism C[Matn] → Z̄ is generated by
det − 1 and d .

By Lemma 3 we have LT(d) = ±ξn−1
nn−1 · · · ξ2

32ξ21 which has gcd 1 with the leading
monomials of the other ideal generators, so the ideal generators mentioned above form a
Gröbner basis over Z. Now (i)–(iv) follow as in the proof of Proposition 1.

(v) This follows from the fact that the remainder modulo the Gröbner basis of a poly-
nomial in Z[(ξij )ij , u1, . . . , un−1] is again in Z[(ξij )ij , u1, . . . , un−1]. �

By (ii) and (iii) of the above proposition Ā and B̄(C)[Δ̄ −1
1 , . . . , Δ̄−1

n−1] can be identified
with respectively Z[Matn]/(det − 1, d) and Z̄. From (iv) it follows that, for any commuta-
tive ring R, Ā(R) embeds in B̄(R).

3.4. The theorem

Lemma 5. Let A be an associative algebra with 1 over a field F and let L be an extension
of F . Assume that for every finite extension F ′ of F , F ′ ⊗F A has no zero divisors. Then
the same holds for L ⊗F A.

Proof. Assume that there exist a, b ∈ L⊗F A \ {0} with ab = 0. Let (ei)i∈I be an F -basis
of A and let ck

ij ∈ F be the structure constants. Write a = ∑
i∈I αiei and b = ∑

i∈I βiei .
Let Ia respectively Ib be the set of indices i such that αi �= 0 respectively βi �= 0 and let
J be the set of indices k such that ck

ij �= 0 for some (i, j) ∈ Ia × Ib . Then Ia and Ib are
non-empty and Ia , Ib and J are finite. Take ia ∈ Ia and ib ∈ Ib . Since ab = 0, the following
equations over F in the variables xi , i ∈ Ia , yi , i ∈ Ib, u and v have a solution over L:

∑
i∈Ia, j∈Ib

ck
ij xiyj = 0 for all k ∈ J,

xiau = 1, yibv = 1.

But then they also have a solution over a finite extension F ′ of F by Hilbert’s Nullstel-
lensatz. This solution gives us non-zero elements a′, b′ ∈ F ′ ⊗F A with a′b′ = 0. �
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Lemma 6. Let R be the valuation ring of a non-trivial discrete valuation of a field F and
let K be its residue class field. Let A be an associative algebra with 1 over R which is free
as an R-module and let L be an extension of F . Assume that for every finite extension K ′
of K , K ′ ⊗R A has no zero divisors. Then the same holds for L ⊗R A.

Proof. Assume that there exist a, b ∈ L ⊗R A \ {0} with ab = 0. By the above lemma we
may assume that a, b ∈ F ′ ⊗R A \ {0} for some finite extension F ′ of F . Let (ei)i∈I be
an R-basis of A. Let ν be an extension to F ′ of the given valuation of F , let R′ be the
valuation ring of ν, let K ′ be the residue class field and let δ ∈ R′ be a uniformiser for ν.
Note that R′ is a local ring and a principal ideal domain (and therefore a UFD) and that K ′
is a finite extension of K (see e.g. [6, Chapter 8, Theorem 5.1]). By multiplying a and b

by suitable integral powers of δ we may assume that their coefficients with respect to the
basis (ei)i∈I are in R′ and not all divisible by δ (in R′). By passing to the residue class
field K we then obtain non-zero a′, b′ ∈ K ′ ⊗R′ (R′ ⊗R A) = K ′ ⊗R A with a′b′ = 0. �
Remark. The above lemmas also hold if we replace “zero divisors” by “non-zero nilpotent
elements.”

For t ∈ {0, . . . , n − 1} let B̄t be the Z-subalgebra generated by the elements ξ̄ij ,
ū1, . . . , ūn−1 and z̄1, . . . , z̄t . So B̄n−1 = B̄ . For a commutative ring R we put B̄t (R) =
R ⊗Z B̄t . From (iv) and (v) of Proposition 1̄ we deduce that the monomials ū

k1
1 · · · ūkn−1

n−1 ×
z̄
m1
1 · · · z̄mt

t , 0 � ki < l, 0 � mi < 2, form a basis of B̄t over Ā. So for any commutative
ring R we have bases for B̄t (R) over Ā(R) and over R. Note that B̄t (R) embeds in B̄(R),
since the Z-basis of B̄t is part of the Z-basis of B̄ .

Modifying the terminology of [11, §16.6], we define the Jacobian ideal of an m-tuple of
polynomials ϕ1, . . . , ϕm as the ideal generated by the k × k minors of the Jacobian matrix
of ϕ1, . . . , ϕm, where k is the height of the ideal generated by the ϕi .

Theorem 4. If l is a power of an odd prime p, then Z is a unique factorisation domain.

Proof. We have seen in Subsection 3.1 that for n = 2 it holds without any extra assump-
tions on l, so assume that n � 3. For the elimination of variables in the proof of Theorem 3
we only needed the invertibility of d̃ , so Z[d̃−1] is isomorphic to a localisation of a poly-
nomial algebra and therefore a UFD. So, by Nagata’s lemma, it suffices to prove that d̃ is
a prime element of Z, i.e. that Z̄ = Z/(d̃) is an integral domain. We do this in 5 steps.

Step 1. B̄(K) is reduced for any field K .

We may assume that K is algebraically closed. Since B̄(K) is a finite Ā(K)-module
it follows that B̄(K) is integral over Ā(K) ∼= K[Matn]/(det − 1, d). So its Krull di-
mension is n2 − 2. By Proposition 1̄(i), B̄(K) is isomorphic to the quotient of a poly-
nomial ring over K in n2 + 2(n − 1) variables by an ideal I which is generated by
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2n elements.9 So B̄(K) is Cohen–Macaulay (see [11, Proposition 18.13]). Let V be the
closed subvariety of (n2 + 2(n − 1))-dimensional affine space defined by I . Then, by
[11, Corollary 18.14], V is equidimensional of dimension n2 − 2. By Theorem 18.15
in [11] it suffices to show that the closed subvariety of V defined by the Jacobian ideal
of det − 1, d, f1 − s1, . . . , fn−1 − sn−1, z

2
1 − Δ1, z

2
n−1 − Δn−1 does not contain any of the

irreducible components of V . This amounts to showing that this subvariety is of codimen-
sion � 1 in V , since V equidimensional.

By Lemma 2, (det − 1, d) is a prime ideal of K[Matn]. So we have an embedding
K[Matn]/(det−1, d) → K[V] which is the comorphism of a finite surjective morphism of
varieties V → V (det−1, d), where V (det−1, d) is the closed subvariety of Matn that con-
sists of the matrices of determinant 1 on which d vanishes. This morphism maps the closed
subvariety of V defined by the Jacobian ideal of det − 1, d, f1 − s1, . . . , fn−1 − sn−1, z

2
1 −

Δ1, . . . , z
2
n−1 − Δn−1 into the closed subvariety of V (det − 1, d) defined by the ideal gen-

erated by the 2nth order minors of the Jacobian matrix of (s1, . . . , sn, d,Δ1, . . . ,Δn−1)

with respect to the variables ξij . This follows easily from the fact that sn = det and that the
zj and uj do not appear in the si and Δi . Since finite morphisms preserve dimension (see
e.g. [11, Corollary 9.3]), it suffices to show that the latter variety is of codimension � 1 in
V (det − 1, d). Since V (det − 1, d) is irreducible, this follows from Lemma 1(ii).

Step 2. B̄0(K) is an integral domain for any field K of characteristic p.

We may assume that K is algebraically closed. From the construction of the fi (see
the proof of Lemma 4) and the additivity of the pth power map in characteristic p it
follows that fi ≡ ul

i mod p. So the kernel of the natural homomorphism from the polyno-
mial algebra K[(ξij )ij , u1, . . . , un−1, z1, . . . , zn−1] to B̄(K) is generated by the elements

det − 1, d,ul
1 − s1, . . . , u

l
n−1 − sn−1 and the Ā(K)-span of the monomials ū

k1
1 · · · ūkt

t ,
0 � ki < l, is closed under multiplication for each t ∈ {0, . . . , n − 1}. We show by in-
duction on t that B̄0,t (K) := Ā(K)[ū1, . . . , ūt ] is an integral domain for t = 0, . . . , n − 1.
For t = 0 this follows from Lemma 2 and Proposition 1̄(ii). Let t ∈ {1, . . . , n − 1} and
assume that it holds for t − 1. Clearly B̄0,t (K) = B̄0,t−1(K)[ūt ] ∼= B̄t−1(K)[x]/(xl − s̄t ).
So it suffices to prove that xl − s̄t is irreducible over the field of fractions of B̄0,t−1(K).
By the Vahlen–Capelli criterion or a more direct argument, it suffices to show that s̄t is not
a pth power in the field of fractions of B̄0,t−1(K). So assume that s̄t = (v/w)p for some
v,w ∈ B̄0,t−1(K) with w �= 0. Then we have vp = s̄tw

p = ūl
tw

p . So with l′ = l/p, we
have (v − ūl′

t w)p = 0. But then v − ūl′
t w = 0 by Step 1. Now recall that v and w can be

expressed uniquely as Ā(K)-linear combinations of monomials in ū1, . . . , ūt−1 with expo-
nents < l. If such a monomial appears with a non-zero coefficient in w, then ūl′

t times this
monomial appears with the same coefficient in the expression of 0 = v − ūl′

t w as an Ā(K)-
linear combination of restricted monomials in ū1, . . . , ūn−1. Since this is impossible, we
must have w = 0. A contradiction.

9 The statement in Proposition 1̄(i) is only for B̄ , but the fact that B̄(K) = K ⊗Z B̄ has the same presentation,
the coefficients of the ideal generators reduced mod p, holds for very general reasons. See e.g. [2, No. II.3.6,
Proposition 5 and its corollary].
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Step 3. B̄0(C) is an integral domain.

This follows immediately from Step 2 and Lemma 6 applied to the p-adic valuation of
Q and with L = C.

Step 4. B̄t (C) is an integral domain for t = 0, . . . , n − 1.

We prove this by induction on t . For t = 0 it is the assertion of Step 3. Let t ∈ {1, . . . ,

n − 1} and assume that it holds for t − 1. Clearly B̄t (C) = B̄t−1(C)[z̄t ] ∼= B̄t−1(C)[x]/
(x2 − Δ̄t ). So it suffices to prove that x2 − Δ̄t is irreducible over the field of fractions
of B̄t−1(C). Assume that x2 − Δ̄t has a root in this field, i.e. that Δ̄t = (v/w)2 for some
v,w ∈ B̄t−1(C) with w �= 0. By the same arguments as in the proof of Lemma 5 we may
assume that for some finite extension F of Q there exist v,w ∈ B̄t−1(F ) with w �= 0 and
w2Δ̄t = v2. Let ν2 be an extension to F of the 2-adic valuation of Q, let S2 be the valuation
ring of ν2, let K be the residue class field and let δ ∈ S2 be a uniformiser for ν2. We may
assume that the coefficients of v and w with respect to the Z-basis of B̄t−1 mentioned ear-
lier are in S2. Assume that the coefficients of w are all divisible by δ (in S2). Then w = 0 in
B̄t−1(K) and therefore v2 = 0 in B̄t−1(K). But by Step 1, B̄t−1(K) is reduced, so v = 0 in
B̄t−1(K) and all coefficients of v are divisible by δ. So, by cancelling a suitable power of
δ in w and v, we may assume that not all coefficients of w are divisible by δ. By passing to
the residue class field K we then obtain v,w ∈ B̄t−1(K) with w �= 0 and w2Δ̄t = v2. But
then (wz̄t − v)2 = 0 in B̄t (K), since z̄2

t = Δ̄t and K is of characteristic 2. The reducedness
of B̄t (K) (Step 1) now gives wz̄t − v = 0 in B̄t (K). Now recall that v and w can be ex-
pressed uniquely as Ā(K)-linear combinations of the monomials ū

k1
1 · · · ūkn−1

n−1 z̄
m1
1 · · · z̄mt−1

t−1 ,
0 � ki < l, 0 � mi < 2. We then obtain a contradiction in the same way as at the end of
Step 2.

Step 5. Z/(d) is an integral domain.

Since Z̄ = B̄(C)[Δ̄−1
1 , . . . , Δ̄ −1

n−1] and the Δ̄i are non-zero in Ā(C) ∼= C[SLn]/(d ′) by
Lemma 2, this follows from Step 4. �
Remark. To attempt a proof for arbitrary odd l > 1 I have tried the filtration with
deg(ξij ) = 2l, deg(zi) = li and deg(ui) = 2i. But the main problem with this filtration
is that it does not simplify the relations si = fi(u1, . . . , un−1) enough.
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