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CLOSED ORBITS AND UNIFORM S-INSTABILITY

IN GEOMETRIC INVARIANT THEORY

MICHAEL BATE, BENJAMIN MARTIN, GERHARD RÖHRLE, AND RUDOLF TANGE

Abstract. In this paper we consider various problems involving the action of
a reductive group G on an affine variety V . We prove some general rationality
results about the G-orbits in V . In addition, we extend fundamental results
of Kempf and Hesselink regarding optimal destabilizing parabolic subgroups
of G for such general G-actions.

We apply our general rationality results to answer a question of Serre con-
cerning the behaviour of his notion of G-complete reducibility under separable
field extensions. Applications of our new optimality results also include a
construction which allows us to associate an optimal destabilizing parabolic
subgroup of G to any subgroup of G. Finally, we use these new optimality
techniques to provide an answer to Tits’ Centre Conjecture in a special case.
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1. Introduction

Let G be a reductive linear algebraic group over an algebraically closed field
k and suppose G acts on an affine variety V over k. A fundamental problem in
geometric invariant theory is to understand the structure of the G-orbits G · v
and their closures G · v for v ∈ V . It is well known that G · v is a union of G-
orbits, exactly one of which is closed. Moreover, the Hilbert-Mumford Theorem
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[15, Thm. 1.4] tells us that if G · v is not closed, then there exists a cocharacter λ
of G such that lima→0 λ(a) · v exists and lies outside G · v. One can associate to λ
a parabolic subgroup Pλ of G; we call λ a destabilizing cocharacter for v and we
call Pλ a destabilizing parabolic subgroup for v.

A strengthened version of the Hilbert-Mumford Theorem — due to Kempf [15]
and Rousseau [28] — says that there exists a so-called optimal cocharacter λv such
that lima→0 λv(a)·v exists and lies outside G·v, and such that λv takes v outside G·v
“as fast as possible”. This optimality notion has had several applications, including
to G-complete reducibility [1], [2], [4] and the theory of associated cocharacters
for nilpotent elements of LieG [14], [26]; see [24, p. 64 and App. 2B] for further
discussion. Hesselink used optimality to study the nullcone of a rational G-module
[13].

In this paper we investigate the structure of the orbits when the field k is not
algebraically closed. Little seems to be known here. Indeed, one of Kempf’s moti-
vations for his optimality construction was to prove a rationality result for desta-
bilizing cocharacters over a perfect field [15, Thm. 4.2]. In Sections 3 and 4 we
prove some results in the general setting of geometric invariant theory. In Section
5 we give applications to the theory of G-complete reducibility and Tits’ Centre
Conjecture. Below we describe the contents of the paper in more detail.

It is convenient to extend the concept of orbit closure to the non-algebraically
closed case. We say that the G(k)-orbit G(k) · v is cocharacter-closed over k if
for any k-defined cocharacter λ of G such that v′ := lima→0 λ(a) · v exists, v′ is
G(k)-conjugate to v (see Definition 3.8). Clearly, this notion depends only on the
G(k)-orbit G(k) · v of v and not on v itself. Let k denote the algebraic closure of
k. It follows from the Hilbert-Mumford Theorem that G · v is closed if and only if
G(k) · v is cocharacter-closed over k. It is sensible, therefore, to consider the G(k)-
orbits that are cocharacter-closed over k as a generalization to non-algebraically
closed fields k of the closed G-orbits. Some of the ideas in Section 3 of this paper
were studied by J. Levy in the special case of characteristic 0; cf. [16]. We thank
Levy for drawing our attention to [16].

Understanding the structure of the orbits is a delicate problem because the inter-
play between the G-orbits and the G(k)-orbits is quite complicated. Let v ∈ V (k).
Suppose first that G · v is not closed and let S be the unique closed G-orbit con-
tained in G · v. It can happen that G(k) · v is cocharacter-closed over k, so there
need not exist a k-defined cocharacter λ such that lima→0 λ(a) ·v exists and belongs
to S; indeed, S need not have any k-points at all. Now suppose that G · v is closed.
If λ is a k-defined cocharacter, then it can happen that lima→0 λ(a) · v exists but
lies outside G(k) · v: in this case, G(k) · v is not cocharacter-closed over k. We give
concrete examples of these phenomena in Remark 5.10 (see also Question 3.13).

Our work on geometric invariant theory has two main strands. Let v ∈ V (k) and
let λ be a k-defined cocharacter of G such that v′ := lima→0 λ(a) ·v exists. First we
consider the case when v′ lies in G(k) · v. Our main results here are Theorems 3.3
and 3.10, which show that under some additional hypotheses, v′ lies in Ru(Pλ)(k)·v.
Theorem 3.3 was first proved by H. Kraft and J. Kuttler for k algebraically closed
of characteristic zero in case V = G/H is an affine homogeneous space; cf. [29,
Prop. 2.1.4] or [11, Prop. 2.1.2].

Second, we consider the case when v′ lies outside G·v. We extend work of Kempf
and Hesselink on optimality. In [15], Kempf shows that if v ∈ V is a point whose
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G-orbit G · v is not closed, and S is a G-stable closed subvariety of V which meets
the closure of G · v, then there is an optimal class of cocharacters which move v
into S (by taking limits). In a similar vein, in [12], Hesselink develops a notion of
uniform instability : here the single point v ∈ V in Kempf’s construction is replaced
by a subset X of V , but the G-stable subvariety S is taken to be a single point of
V . Moreover, Hesselink’s results work for arbitrary non-algebraically closed fields.
Our constructions, culminating in Theorem 4.5, combine these two ideas within
the single framework of uniform S-instability, providing a useful extension of these
optimality methods in geometric invariant theory.

There is an important open problem which we do not address. We do not deal
with the intermediate case when v′ lies inside G·v but outside G(k)·v: in particular,
our optimality results do not give a true generalization of the Hilbert-Mumford-
Kempf-Rousseau optimality theorem to arbitrary k. To do this, one would have
to answer the following question. Suppose v ∈ V (k) and there exists a k-defined
cocharacter λ such that lima→0 λ(a) · v exists and lies outside G(k) · v. Does there
exist an optimal k-defined cocharacter which takes v outside G(k) · v as fast as
possible? The cocharacter λv described above will not suffice: for instance, if G · v
is closed, then λv is not even defined. We plan to return to this question in future
work.

The hypothesis that the point v ∈ V is a k-point turns out to be unnecessarily
strong, and we can often get away with a weaker condition on the stabilizer CG(v)
(see the beginning of Section 3). This is convenient in applications to G-complete
reducibility (see Remark 5.7).

As well as being of interest in their own right, our general results on G-orbits and
rationality have applications to the theory of G-complete reducibility, introduced
by Serre [32] and developed in [1], [2], [4], [5], [17], [18], [19], [30], [31], [33], [34].
In particular, we are able to use them to answer a question of Serre about how G-
complete reducibility behaves under extensions of fields (Theorem 5.11). Our notion
of a cocharacter-closed orbit allows us to give a geometric characterization of G-
complete reducibility over a field k (Theorem 5.9), thereby extending [1, Cor. 3.7].
We use our optimality results to attach to any subgroupH ofG an optimal parabolic
subgroup of G containing H, which is proper if and only if H is not G-completely
reducible (see Theorem 5.16 and Definition 5.17). This optimal parabolic subgroup
provides a very useful tool in the study of subgroups of reductive groups. As an
illustration of its effectiveness, we give short proofs of some existing results, and
prove a special case of Tits’ Centre Conjecture (Theorem 5.31). An important tool,
which we introduce in Definition 5.4, is the notion of a generic tuple of a subgroup
H of G. Replacing generating tuples with generic tuples allows us to avoid many
technical problems that arose in our earlier work (see Remark 5.7).

We also refer the reader to [5], where we discuss further consequences of the
results of the present paper.

2. Notation and preliminaries

2.1. Basic notation. Let k be a field, let ks denote its separable closure, and let
k denote its algebraic closure. Note that ks = k if k is perfect. We denote the
Galois group Gal(ks/k) = Gal(k/k) by Γ. We use the notion of a k-scheme from
[7, AG.11]: a k-scheme is a k-scheme together with a k-structure. So k-schemes are
assumed to be of finite type and reduced separated k-schemes are called k-varieties.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

3646 M. BATE, B. MARTIN, G. RÖHRLE, AND R. TANGE

Furthermore, a subscheme of a scheme V over k or over k is always a subscheme of
V as a scheme over k and points of V are always closed points of V as a scheme over
k. By “variety” we mean “variety over k”. Non-reduced schemes are only used in
Section 4 and there they only play a technical rôle; we always formulate our results
for k-varieties. If S is a subset of a variety, then S denotes the closure of S.

Now let V be a k-variety. If k1/k is an algebraic extension, then we write V (k1)
for the set of k1-points of V . By a separable point we mean a ks-point. If W is
a subvariety of V , then we set W (k1) = W ∩ V (k1). Here we do not assume that
W is k-defined, so W (k1) can be empty even when k1 = ks. The Galois group Γ
acts on V ; see, e.g., [35, 11.2]. Recall the Galois criterion for a closed subvariety
W of V to be k-defined: W is k-defined if and only if it contains a Γ-stable set of
separable points of V which is dense in W (see [7, Thm. AG.14.4]).

We denote by Matm or Matm(k) the algebra of m × m matrices over k. The
general linear group GLm acts on Matm by conjugation.

Let H be a k-defined linear algebraic group. By a subgroup of H we mean
a closed subgroup. We let Z(H) denote the centre of H and H0 the connected
component of H that contains 1. Recall that H has a k-defined maximal torus [7,
18.2(i) Thm.]. For K a subgroup of H, we denote the centralizer of K in H by
CH(K) and the normalizer of K in H by NH(K). We denote the group of algebraic
automorphisms of H by AutH.

For the set of cocharacters (one-parameter subgroups) of H we write Y (H); the

elements of Y (H) are the homomorphisms from the multiplicative group k
∗
to H.

We denote the set of k-defined cocharacters by Yk(H). There is a left action of H

on Y (H) given by (h · λ)(a) = hλ(a)h−1 for λ ∈ Y (H), h ∈ H and a ∈ k
∗
. The

subset Yk(H) is stabilized by H(k).
The unipotent radical of H is denoted by Ru(H); it is the maximal connected

normal unipotent subgroup of H. The algebraic group H is called reductive if
Ru(H) = {1}; note that we do not insist that a reductive group is connected.

Let A be an algebraic group, a Lie algebra or an associative algebra. If n ∈ N
and x = (x1, . . . , xn) ∈ An, then we say that x generates A if the xi generate A as
an algebraic group (resp. Lie algebra, resp. associative algebra). By this we mean
in the algebraic group case that the algebraic subgroup of A generated by the xi

is the whole of A, and we say that the algebraic group A is topologically finitely
generated.

Throughout the paper, G denotes a k-defined reductive algebraic group, possibly
disconnected. We say an affine G-variety V is k-defined if both V and the action
of G on V are k-defined. By a rational G-module, we mean a finite-dimensional
vector space over k with a linear G-action. If both V and the action are k-defined,
then we say the rational G-module is k-defined.

Suppose T is a maximal torus of G. Let Ψ = Ψ(G, T ) be the set of roots of G
relative to T . Let α ∈ Ψ. Then Uα denotes the root subgroup of G associated to
α.

2.2. Non-connected reductive groups. The crucial idea which allows us to deal
with non-connected groups is the introduction of so-called Richardson parabolic
subgroups (R-parabolic subgroups) of a reductive group G. We briefly recall the
main definitions and results; for more details and further results, the reader is
referred to [1, Sec. 6].
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Definition 2.1. For each cocharacter λ ∈ Y (G), let

Pλ = {g ∈ G | lim
a→0

λ(a)gλ(a)−1 exists}

(see Section 2.3 for the definition of limit). Recall that a subgroup P of G is
parabolic if G/P is a complete variety. The subgroup Pλ is parabolic in this
sense, but the converse is not true: e.g., if G is finite, then every subgroup is
parabolic, but the only subgroup of G of the form Pλ is G itself. If we define
Lλ = {g ∈ G | lim

a→0
λ(a)gλ(a)−1 = g}, then Pλ = Lλ � Ru(Pλ), and we also have

Ru(Pλ) = {g ∈ G | lim
a→0

λ(a)gλ(a)−1 = 1}. The map cλ : Pλ → Lλ given by

cλ(g) = lim
a→0

λ(a)gλ(a)−1 is a surjective homomorphism of algebraic groups with

kernel Ru(Pλ); it coincides with the usual projection Pλ → Lλ. We abuse notation
and denote the corresponding map from Pn

λ to Ln
λ by cλ as well, for any n ∈ N.

The subgroups Pλ for λ ∈ Y (G) are called the Richardson parabolic (or R-parabolic)
subgroups of G. Given an R-parabolic subgroup P , a Richardson Levi (or R-Levi)
subgroup of P is any subgroup Lλ such that λ ∈ Y (G) and P = Pλ.

If G is connected, then the R-parabolic subgroups (resp. R-Levi subgroups of R-
parabolic subgroups) ofG are exactly the parabolic subgroups (resp. Levi subgroups
of parabolic subgroups) of G; indeed, most of the theory of parabolic subgroups
and Levi subgroups of connected reductive groups carries over to R-parabolic and
R-Levi subgroups of arbitrary reductive groups. In particular, all R-Levi subgroups
of an R-parabolic subgroup P are conjugate under the action of Ru(P ). If P,Q are
R-parabolic subgroups of G and P 0 = Q0, then Ru(P ) = Ru(Q).

Lemma 2.2. Let P,Q be R-parabolic subgroups of G with P ⊆ Q and P 0 = Q0,
and let M be an R-Levi subgroup of Q. Then P ∩M is an R-Levi subgroup of P .

Proof. Fix a maximal torus T of G such that T ⊆ M . Then T ⊆ P , since P 0 = Q0.
There exists a unique R-Levi subgroup L of P such that T ⊆ L, [1, Cor. 6.5].
There exists a unique R-Levi subgroup M ′ of Q such that L ⊆ M ′, [1, Cor. 6.6].
Since M is the unique R-Levi subgroup of Q that contains T , [1, Cor. 6.5], we must
have M = M ′. Hence L ⊆ P ∩M . If this inclusion is proper, then P ∩M meets
Ru(P ) = Ru(Q) non-trivially, a contradiction. We deduce that L = P ∩M . �

We now consider some rationality issues. The proof of the next lemma follows
immediately from the definitions of limit and of the actions of Γ on ks-points and
on ks-defined morphisms.

Lemma 2.3. Let λ ∈ Yks
(G) and let γ ∈ Γ. Then Pγ·λ = γ ·Pλ and Lγ·λ = γ ·Lλ.

Remark 2.4. If G is connected, then a parabolic subgroup P of G is k-defined if and
only if P = Pλ for some λ ∈ Yk(G), [35, Lem. 15.1.2(ii)]. However, the analogous
result for R-parabolic subgroups of a non-connected group G is not true in general.
To see this, let T be a non-split one-dimensional torus over k and let F be the group
of order 2 acting on T by inversion. Then T is a k-defined R-parabolic subgroup of
the reductive group G := FT , but T is not of the form Pλ for any λ over k, because
Yk(G) = {0}. Our next set of results allows us to deal with this problem.

Lemma 2.5. Let λ ∈ Y (G).

(i) If Pλ is k-defined, then so is Ru(Pλ). Moreover, if λ belongs to Yk(G), then
Pλ, Lλ and the isomorphism Lλ �Ru(Pλ) → Pλ are k-defined.
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(ii) Suppose Pλ is k-defined. Then there exists μ ∈ Yk(G) such that Pλ ⊆ Pμ and
P 0
λ = P 0

μ .
(iii) Let P be a k-defined R-parabolic subgroup. Then any k-defined maximal torus

of P is contained in a unique k-defined R-Levi subgroup of P and any two k-
defined R-Levi subgroups of P are conjugate by a unique element of Ru(P )(k).

Proof. (i). We have that P 0
λ is k-defined, so Ru(Pλ) = Ru(P

0
λ) is k-defined, by [7,

Prop. V.20.5]. Now assume that λ ∈ Yk(G). Then Lλ = CG(λ(k
∗
)) is defined over

k, by [7, Cor. III.9.2]. Now the multiplication map G × G → G is k-defined, so
Pλ is k-defined, thanks to [7, Cor. AG.14.5], and the stated isomorphism is then
clearly also k-defined.

(ii). After conjugating λ by an element of Pλ, we may assume that λ ∈ Y (T ) for
some k-defined maximal torus T of Pλ. Since T splits over a finite Galois extension
of k, λ has only finitely many Γ-conjugates. Let μ ∈ Y (T ) be their sum. Since
Pλ is k-defined, we have Pγ·λ = Pλ for all γ ∈ Γ. By considering the pairings of
λ and μ with the coroots of G relative to T , we deduce that P 0

μ = P 0
λ (cf. [35,

15.1.2]). Using a G-equivariant embedding of G acting on itself by conjugation into
a finite-dimensional G-module, we deduce that lim

a→0
μ(a) · g exists if lim

a→0
(γ ·λ)(a) · g

exists for all γ ∈ Γ. So Pλ ⊆ Pμ.
(iii). Because of [7, Prop. V.20.5] and [1, Cors. 6.5, 6.6, 6.7], it is enough to show

that the unique R-Levi subgroup of P containing a given k-defined maximal torus
of P is k-defined. (Here the required uniqueness follows from loc. cit.) Let T be
a k-defined maximal torus of P . By the proof of (ii), there exists μ ∈ Yk(T ) such
that P ⊆ Pμ and P 0 = P 0

μ . Clearly, Lμ is the R-Levi subgroup of Pμ containing T ,
and it is k-defined by (i). The unique R-Levi subgroup of P containing T is P ∩Lμ,
by Lemma 2.2. Since P ∩ G(ks) and Lμ ∩ G(ks) are Γ-stable, the same holds for
P ∩Lμ ∩G(ks). So it suffices to show that this set is dense in P ∩Lμ. This follows
because the components of P ∩ Lμ are components of Lμ and the separable points
are dense in each component of Lμ. �

Corollary 2.6. Let λ ∈ Yk(G) and let μ ∈ Y (G) such that Pλ = Pμ and Lμ is
k-defined. Then there exists ν ∈ Yk(G) such that Pλ = Pν and Lμ = Lν .

Proof. By Lemma 2.5(iii), there exists u ∈ Ru(Pλ)(k) such that Lu·λ = uLλu
−1 =

Lμ, so we can take ν = u · λ. �

2.3. G-varieties. If G acts on a set V , then we denote for a subset S of V , the
pointwise stabilizer {g ∈ G | g · s = s for all s ∈ S} of S in G by CG(S) and the
setwise stabilizer {g ∈ G | g · S = S} of S in V by NG(S).

Now suppose G acts on an affine variety V and let v ∈ V . Then for each

cocharacter λ ∈ Y (G), we can define a morphism of varieties φv,λ : k
∗ → V via the

formula φv,λ(a) = λ(a) · v. If this morphism extends to a morphism φ̂v,λ : k → V ,

then we say that lim
a→0

λ(a) · v exists, and set this limit equal to φ̂v,λ(0); note that

such an extension, if it exists, is necessarily unique.
Let λ ∈ Y (G). Then the set of v ∈ V such that lim

a→0
λ(a) · v exists is Pλ-stable

and we have

(2.7) lim
a→0

λ(a) · (x · v) = cλ(x) ·
(
lim
a→0

λ(a) · v
)
,
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for all x ∈ Pλ and v ∈ V . Suppose that the G-variety V is k-defined. It is easily

shown that if φv,λ is k-defined, then φ̂v,λ is k-defined and lima→0 λ(a) · v ∈ V (k);
in particular, this is the case if λ ∈ Yk(G) and v ∈ V (k).

Remark 2.8. In many of our proofs, we want to reduce the case of a general (k-
defined) affine G-variety V to the case of a (k-defined) rational G-module V0. Such
a reduction is possible, thanks to [15, Lem. 1.1(a)], for example: given V , there is
a k-defined G-equivariant embedding of V inside some V0. As this situation arises
many times in the sequel, we now set up some standard notation which will be in
force throughout the paper.

Let V be a rational G-module. Given λ ∈ Y (G) and n ∈ Z, we define

Vλ,n := {v ∈ V | λ(a) · v = anv for all a ∈ k
∗},(2.9)

Vλ,≥0 :=
∑
n≥0

Vλ,n and Vλ,>0 :=
∑
n>0

Vλ,n.

Then Vλ,≥0 consists of the vectors v ∈ V such that lim
a→0

λ(a) · v exists, Vλ,>0 is the

subset of vectors v ∈ V such that lim
a→0

λ(a) · v = 0, and Vλ,0 is the subset of vectors

v ∈ V such that lim
a→0

λ(a) · v = v. Furthermore, the limit map v �→ lim
a→0

λ(a) · v is

nothing but the projection of Vλ,≥0 with kernel Vλ,>0 and image Vλ,0. Of course,
similar remarks apply to −λ, Vλ,≤0 := V−λ,≥0, and Vλ,<0 := V−λ,>0. If the G-
module V is defined over k, then each Vλ,n and Vλ,>0, etc., is k-defined (cf. [7,
II.5.2]).

Now let T be a torus in G with λ ∈ Y (T ). For χ ∈ X(T ), let Vχ denote the
corresponding weight space of T in V . If v ∈ V , then we denote by vχ the component
of v in the weight space Vχ and we put suppT (v) = {χ ∈ X(T ) | vχ �= 0}, called
the support of v with respect to T . Then Vλ,0, Vλ,≥0 and Vλ,>0 are the direct sums
of the subspaces Vλ,〈λ,χ〉, where χ ∈ X(T ) is such that 〈λ, χ〉 = 0, ≥ 0 and > 0,
respectively. Furthermore, v ∈ Vλ,≥0 if and only if 〈λ, χ〉 ≥ 0 for all χ ∈ suppT (v).

Finally, we recall a standard result [6, Lem. 5.2]. Suppose T is a maximal torus
of G with λ ∈ Y (T ). Let α ∈ Ψ = Ψ(G, T ), v ∈ Vλ,n and u ∈ Uα. Then

(2.10) u · v − v ∈
∑
m≥1

Vλ,n+m〈λ,α〉.

Hence, for any u ∈ Ru(Pλ) and any v ∈ Vλ,≥0, we have

(2.11) u · v − v ∈ Vλ,>0.

We continue with some further preliminary results used in the proofs below.

Lemma 2.12. Suppose G acts on an affine variety V . Let v ∈ V , let λ ∈ Y (G)
and let u ∈ Ru(Pλ). Then lim

a→0
λ(a) · v exists and equals u · v if and only if u−1 · λ

centralizes v.

Proof. If lim
a→0

λ(a) · v exists and equals u · v, then λ fixes u · v and therefore u−1 · λ
centralizes v. Now assume that the latter is the case. Then lim

a→0
λ(a)u−1λ(a)−1 = 1

and u−1λ(a)−1u fixes v for all a ∈ k
∗
, so

u · v =
(
lim
a→0

λ(a)u−1λ(a)−1
)
· u · v = lim

a→0
λ(a) · (u−1λ(a)−1u) · v = lim

a→0
λ(a) · v.

�
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Lemma 2.13. Suppose G acts on an affine variety V . Let v ∈ V , λ ∈ Y (G), such
that v′ := lim

a→0
λ(a) · v exists. Furthermore, let x ∈ P−λ and u ∈ Ru(Pλ) be such

that xu · v is λ(k
∗
)-fixed. Then v′ = u · v.

Proof. Without loss, we may assume that V is a rationalG-module (cf. Remark 2.8).
Write x = yl, where y ∈ Ru(P−λ) and l ∈ Lλ. Since Vλ,≤0 is P−λ-stable and
ylu · v ∈ Vλ,0, we have that lu · v = y−1ylu · v ∈ Vλ,≤0. On the other hand,
lu · v ∈ Vλ,≥0, since v ∈ Vλ,≥0 and Vλ,≥0 is Pλ-stable. So lu · v ∈ Vλ,0. It follows
that

lu · v = lim
a→0

λ(a) · lu · v = lim
a→0

λ(a)luλ(a)−1 · lim
a→0

λ(a) · v = l · v′.

So v′ = u · v. �

Remark 2.14. The proof of Lemma 2.13 also works if we replace the assumption

that xu ·v is λ(k
∗
)-fixed by the weaker assumption that lim

a→0
λ(a)−1 ·(xu ·v) exists. If

xu ·v is λ(k
∗
)-fixed, then we can draw the additional conclusion that ylu ·v = lu ·v,

since Ru(P−λ) acts trivially on Vλ,≤0/Vλ,<0, by (2.11).

Lemma 2.15. Let V be a rational G-module. Let λ, μ ∈ Y (G) such that λ(k
∗
) and

μ(k
∗
) commute. Then for t ∈ N sufficiently large, the following hold:

(i) Vtλ+μ,≥0 ⊆ Vλ,≥0, Vtλ+μ,>0 ⊇ Vλ,>0 and Vtλ+μ,0 = Vλ,0 ∩ Vμ,0;
(ii) Ptλ+μ ⊆ Pλ (hence Ru(Ptλ+μ) ⊇ Ru(Pλ)) and Ltλ+μ = Lλ ∩ Lμ.

Furthermore, if t ∈ N is such that property (i) holds and v ∈ V is such that
v′ := lima→0 λ(a) · v and v′′ := lima→0 μ(a) · v′ exist, then lima→0(tλ + μ)(a) · v
exists and equals v′′.

Proof. Choose a maximal torus T of G such that λ, μ ∈ Y (T ). Let Φ be the
set of weights of T on V . Choose t ∈ N large enough such that for any χ ∈ Φ
with 〈λ, χ〉 �= 0, we have that 〈tλ + μ, χ〉 is non-zero and has the same sign as
〈λ, χ〉. Then (i) follows. Part (ii) follows from the argument of the proof of [20,
Prop. 6.7] (increasing t if necessary). Alternatively, it can be deduced from part
(i) by embedding G with the conjugation action G-equivariantly in a rational G-
module W and observing that Pν = Wν,≥0 ∩G and Lν = Wν,0 ∩G.

Now assume that t ∈ N is such that (i) holds and let v ∈ V be such that the limits
v′ and v′′ above exist. Since (i) holds, we have for all χ ∈ Φ that 〈tλ + μ, χ〉 = 0
if and only if 〈λ, χ〉 = 0 and 〈μ, χ〉 = 0. For ν ∈ Y (T ), let Φν,≥0 and Φν,0 be
the sets of weights χ ∈ Φ such that 〈ν, χ〉 ≥ 0 and 〈ν, χ〉 = 0, respectively. Then
suppT (v) ⊆ Φλ,≥0 and suppT (v)∩Φλ,0 ⊆ Φμ,≥0. It follows that lima→0(tλ+μ)(a)·v
exists and equals v′′. �

We finish the section with a result that lets us pass from k-points to arbitrary
points. Let V be a k-defined rational G-module and let k1/k be a field extension.
Let v ∈ V (k1) and let λ ∈ Yk(G). Pick a basis (αi)i∈I for k1 over k; then we can
write v =

∑
i∈J αivi for some finite subset J of I and certain (unique) vi ∈ V (k).

Clearly, we may assume that J = {1, . . . , n} for some n ∈ N. Set v = (v1, . . . , vn) ∈
V n and let G act diagonally on V n.

Lemma 2.16. With the notation as above, the following hold:

(i) lima→0 λ(a) · v exists if and only if lima→0 λ(a) · v exists if and only if
lima→0 λ(a) · vi exists for each i.
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(ii) Suppose the limits in (i) exist. Then for any g ∈ G(k), we have v′ = g · v if
and only if v′ = g · v if and only if v′i = g · vi for each i.

Proof. Part (ii) is obvious. In part (i), it follows easily from the definitions of limit
and direct product that the second limit exists if and only if the third limit exists.
Since λ is k-defined, Vλ,≥0 is k-defined, so Vλ,≥0 =

⊕
i∈I αi(Vλ,≥0 ∩ V (k)). So

v ∈ Vλ,≥0 if and only if vi ∈ Vλ,≥0 for all i ∈ J . Hence the first limit exists if and
only if the third limit exists. This completes the proof. �

3. Orbits and rationality

In this section we prove some results about G(k)-orbits as indicated in the Intro-
duction. We maintain the notation from the previous sections; recall in particular
that Γ = Gal(ks/k).

Suppose V is a k-defined affine G-variety. Even when one is interested mainly
in rationality questions, one must sometimes consider points v ∈ V that are not
k-points. For instance, we often want to prove results about a k-defined subgroup
H of G by choosing a generating tuple h = (h1, . . . , hn) ∈ Hn for some n ∈ N, but
H need not admit such a tuple with the hi all being k-points (for example when
k is finite and H is infinite). Fortunately, the weaker property that CG(ks)(v) is
Γ-stable will often suffice (see Theorem 3.1, for example). We do not require CG(v)
to be k-defined here; note that even when v is a k-point, CG(v) is k-closed but need
not be k-defined. Some of our results hold without any rationality assumptions on
v at all (see Theorems 3.3 and 3.10).

Theorem 3.1. Suppose V is a k-defined affine G-variety. Let v ∈ V and let
λ ∈ Yk(G) be such that v′ := lima→0 λ(a) · v exists. If v′ is Ru(Pλ)(ks)-conjugate
to v and CG(ks)(v) is Γ-stable, then v′ is Ru(Pλ)(k)-conjugate to v.

Proof. Since CG0(ks)(v) = CG(ks)(v)∩G0(ks), we may assume that G is connected.
Set P = Pλ. By hypothesis, there exists u ∈ Ru(P )(ks) such that v′ = u · v.
By Lemma 2.12, μ := u−1 · λ ∈ Yks

(G) centralizes v, so μ(k
∗
) ⊆ CP (v), and

μ(k∗s) ⊆ CG(ks)(v) ∩ P . Note that since u ∈ P , we have Pμ = P . Let H be the

subgroup of G generated by the Γ-conjugates of μ(k
∗
); then the union of the Γ-

conjugates of μ(k∗s) is dense in H, so H is closed, connected and ks-defined, by

[7, AG.14.5, I.2.2], and H ⊆ P , since μ(k
∗
) ⊆ P and P is Γ-stable. Moreover,

since CG(ks)(v) is Γ-stable, we can conclude that H ⊆ CP (v). Since H has a Γ-
stable dense set of separable points, H is k-defined, and hence contains a k-defined
maximal torus S. There exists h ∈ H such that μ′ := h · μ belongs to Y (S); note
that μ′ centralizes v, and since h ∈ P , we deduce that Pμ′ = P . In case k is perfect,
CP (v) is k-defined, since CP (v) = CG(v) ∩ P is Γ-stable. So in this case we could
simply have taken S to be a k-defined maximal torus of CP (v).

By [7, Cor. III.9.2], CP (S) is k-defined, so it has a k-defined maximal torus T .
Note that S ⊆ T , since S commutes with T and T is maximal. There exists a unique
k-defined Levi subgroup L of P containing T , by Lemma 2.5(iii). But Lμ′ is a Levi
subgroup of P containing T , so Lμ′ = L. Thus we have two Levi subgroups Lλ and
Lμ′ of P , both k-defined. By Lemma 2.5(iii), there exists a unique u0 ∈ Ru(P )(k)
such that Lλ = u0Lμ′u0

−1. We also have μ′ = hu−1 · λ, and since hu−1 ∈ P ,
we can write hu−1 = u1l with u1 ∈ Ru(P ) and l ∈ Lλ. But Lλ centralizes λ, so
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μ′ = u1l · λ = u1 · λ. So u0
−1Lλu0 = Lμ′ = Lu1·λ = u1Lλu1

−1. Since Ru(P ) acts
simply transitively on the set of Levi subgroups of P , we must have u1 = u0

−1, and
hence μ′ = u0

−1 · λ. Applying Lemma 2.12 again, we see that v′ = u0 · v, because
μ′ centralizes v. This proves the theorem. �

Example 3.2. The assumption that CG(ks)(v) is Γ-stable in Theorem 3.1 is nec-
essary. For instance, let G = SL2 act on V = G by conjugation. Choose y ∈ ks \ k
and x ∈ k∗ \ {±1}. Let

v′ =

(
x 0
0 x−1

)
and v =

(
1 y
0 1

)(
x 0
0 x−1

)(
1 −y
0 1

)
,

and define λ ∈ Yk(G) by λ(a) =

(
a 0
0 a−1

)
. It is easily seen that v′ = lim

a→0
λ(a) ·v

and that v′ is Ru(Pλ)(ks)-conjugate to v but not Ru(Pλ)(k)-conjugate to v.

We can now state our first main result.

Theorem 3.3. Suppose k is perfect. Suppose V is a k-defined affine G-variety and
let v ∈ V . Let λ ∈ Yk(G) such that v′ := lim

a→0
λ(a) · v exists and is G(k)-conjugate

to v. Then v′ is Ru(Pλ)(k)-conjugate to v.

Proof. Fix a maximal torus T of Pλ such that λ ∈ Y (T ) and a Borel subgroup B
of P 0

λ such that T ⊆ B. Let B− be the Borel subgroup of G opposite to B with
respect to T ; note that B− ⊆ P−λ.

We begin with the case that k is algebraically closed. We can assume that
v �= v′. For a ∈ k∗, set va = λ(a) · v; then va �= v′ for all a ∈ k∗. We show that
v ∈ Ru(Pλ)P

0
−λ · v′. Let ϕ : G → G · v′ be the orbit map of v′. Then ϕ is open, by

[7, AG Cor. 18.4]. The set Ru(Pλ)P
0
−λ contains the big cell BB− ⊆ G0, which is an

open neighbourhood of 1 in G, so ϕ(Ru(Pλ)P
0
−λ) contains an open neighbourhood

of ϕ(1) = v′ in G · v′. The image of k∗ under the limit morphism φ̂v,λ : k → V
meets this neighbourhood, so there exists a ∈ k∗ such that va ∈ Ru(Pλ)P

0
−λ ·v′. But

Ru(Pλ) is normal in Pλ and hence Ru(Pλ)P
0
−λ is stable under left multiplication

by elements of T , so we in fact have v ∈ Ru(Pλ)P
0
−λ · v′. Lemmas 2.5 and 2.13 now

imply that v′ = u · v for some u ∈ Ru(Pλ). This completes the proof when k is
algebraically closed.

Now assume k is perfect. First assume v ∈ V (k). By the algebraically closed case,
we know that v and v′ are Ru(Pλ)-conjugate. Since CG(ks)(v) is Γ-stable, we can
apply Theorem 3.1 to deduce that v and v′ are Ru(Pλ)(k)-conjugate. Now let v be
arbitrary. There is no loss in assuming that V is a k-defined rational G-module (cf.
Remark 2.8). Let v,v′ ∈ V n be as in Lemma 2.16. Then lima→0 λ(a) ·v = v′ and v
and v′ are G(k)-conjugate, so they are Ru(Pλ)(k)-conjugate by the argument above.
Lemma 2.16(ii) implies that v and v′ are Ru(Pλ)(k)-conjugate, as required. �

Remark 3.4. Theorem 3.3 was first proved by H. Kraft and J. Kuttler for k alge-
braically closed of characteristic zero in case V = G/H is an affine homogeneous
space (by a method different from ours); cf. [29, Prop. 2.1.4] or [11, Prop. 2.1.2].
We do not know whether this theorem holds for arbitrary k.

The following consequence of Theorem 3.3 is used in the proof of [5, Prop. 3.34].
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Corollary 3.5. Let G1 and G2 be reductive groups and let V be an affine (G1×G2)-
variety. Let v ∈ V and λ1 ∈ Y (G1) and assume that v′ := lima→0 λ1(a) · v exists.
Then the following hold:

(i) If v′ is (G1 ×G2)-conjugate to v, then it is G1-conjugate to v. In particular,
G1 · v is closed if (G1 ×G2) · v is.

(ii) Let π : V → V//G2 be the canonical projection and assume that π−1(π(v)) =
G2 · v. If π(v′) is G1-conjugate to π(v), then v′ is G1-conjugate to v.

Proof. (i). By Theorem 3.3, there exists u ∈ Ru(Pλ1
(G1×G2)) such that v′ = u ·v.

But Ru(Pλ1
(G1×G2)) = Ru(Pλ1

(G1))×{1}, so v′ is G1-conjugate to v, as required.
The second assertion follows immediately from the Hilbert-Mumford Theorem.

(ii). This follows immediately from (i). �

The following example shows that the converse of Corollary 3.5(i) does not hold
in general.

Example 3.6. Let G = G1 ×G2, where Gi = k∗ for i = 1, 2 (here k is assumed to
be algebraically closed). Set V = k2, and let G act on V as follows:

(t1, t2) · (x1, x2) := (t21t2
−1x1, t

2
2t1

−1x2),

for ti ∈ Gi and (x1, x2) ∈ V . Consider the point (1, 1) ∈ V . Then the Gi-orbits of
(1, 1) are clearly closed, but the G-orbit of (1, 1) is not closed (if λ ∈ Y (G) is given
by λ(a) = (a, a), then lima→0 λ(a) · (1, 1) = (0, 0)).

Here is a further consequence of Theorem 3.3: it gives a criterion for determining
whether an orbit is closed when k is perfect.

Corollary 3.7. Assume k is perfect. Let V be a k-defined affine G-variety and let
v ∈ V such that CG(ks)(v) is Γ-stable. Suppose there exists λ ∈ Yk(G) such that
v′ := lima→0 λ(a) · v exists and is not Ru(Pλ)(k)-conjugate to v. Then v′ �∈ G · v.
In particular, G · v is not closed.

Proof. Suppose v′ is G-conjugate to v. Then v′ is Ru(Pλ)-conjugate to v, by The-
orem 3.3. Since CG(ks)(v) is Γ-stable and k is perfect, v′ is Ru(Pλ)(k)-conjugate
to v by Theorem 3.1, a contradiction. Hence v′ �∈ G · v, and thus this orbit is not
closed. �

In order to state our next main result, we need an appropriate extension of the
concept of orbit closure to the non-algebraically closed case.

Definition 3.8. Let V be a k-defined affine G-variety. Let v ∈ V . We say that
the G(k)-orbit G(k) · v is cocharacter-closed over k if for any λ ∈ Yk(G) such that
v′ := lima→0 λ(a) · v exists, v′ is G(k)-conjugate to v. Note that we do not require
v to be a k-point of V .

Remark 3.9. In what follows we give V (k) the topology induced by the Zariski
topology of V .

(i). Let v ∈ V (k). If k is infinite, then G(k) is dense in G [7, V.18.3 Cor.], so
G(k) · v is dense in the closure of G · v. It follows easily that if G(k) · v is closed in
V (k), then G(k) · v is cocharacter-closed over k. Corollary 4.11 below now implies
that if k is infinite and perfect and G(k) · v is closed in V (k), then G · v is closed.
On the other hand, if k is finite, then G(k) · v is a finite subset of V (k) and hence
is closed in V (k), even though G(k) · v need not be cocharacter-closed over k.
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(ii). If G(k) · v is cocharacter-closed over k, then G(k) · v need not be closed in
V (k), even if G · v is closed. We give two examples. First, let k be a non-perfect

field of characteristic p > 0. Let G = k
∗
acting on V = k

∗
by g · v = gpv. Give G

and V the obvious k-structures. Then G(k) · 1 = (k∗)p is not closed in V (k) = k∗,

but G · 1 = k
∗
is closed. Moreover, G(k) · 1 is cocharacter-closed over k, since the

limit lima→0 λ(a) · 1 does not exist for any non-trivial λ ∈ Y (G).
Second, let k = R and let G = SL2 acting on V = G by conjugation. Let

v =

(
0 −1
1 0

)
, w =

(
0 1
−1 0

)
, and g =

(
i 0
0 −i

)
.

Then v, w ∈ V (R) and w = g · v, so v and w are G(C)-conjugate, but it is easily
checked that they are not G(R)-conjugate. Hence w lies in the closure in V (R) of
G(R) · v, which implies that G(R) · v is not closed in V (R). But G · v is closed
since v is semisimple ([7, III.9.2 Thm.]), so G(R) · v is cocharacter-closed over R by
Corollary 3.7.

(iii). In [16], Levy investigated a notion similar to our concept of cocharacter-
closure in case of a rational G-module in characteristic 0. In [16, Thms. 2.1 and
3.1], Levy proved special cases of our Theorem 3.3.

Our next result says that we can remove the hypothesis that k is perfect in
Theorem 3.3 if we assume that G is connected and G(k) · v is cocharacter-closed
over k.

Theorem 3.10. Suppose V is a k-defined affine G-variety. Assume that G is
connected. Let v ∈ V . Then the following are equivalent:

(i) G(k) · v is cocharacter-closed over k;
(ii) for all λ ∈ Yk(G), if v′ := lima→0 λ(a)·v exists, then v′ is Ru(Pλ)(k)-conjugate

to v.

Proof. It is immediate that (ii) implies (i), so we need to prove that (i) implies (ii).
Assume G(k) · v is cocharacter-closed over k. Without loss of generality we can
assume that V is a k-defined rational G-module (cf. Remark 2.8). We argue by
induction on dimVλ,0 for λ ∈ Yk(G). Suppose λ ∈ Yk(G) and let v ∈ V such that
v′ := lima→0 λ(a) · v exists. If dimVλ,0 = 0, then Vλ,0 = 0 and so v′ = 0, which
forces v = 0 and we are done. Let S be a maximal k-split torus of G with λ ∈ Yk(S),
let kΨ be the set of roots of G relative to S and let kW = NG(S)/CG(S) be the
Weyl group over k. Any w ∈ kW has a representative in NG(S)(k); see [7, V.21.2].
We have CG(S) ⊆ Pλ. Fix a minimal k-defined parabolic subgroup P of G with
CG(S) ⊆ P ⊆ Pλ. Using the notation of [7, V.21.11], the choice of P corresponds
to a choice of simple roots kΔ ⊆ kΨ and then, Pλ = kPJ for a unique subset J
of kΔ. Define the subset kW

J of kW as in [7, V.21.21], and for each w ∈ kW
J

define the subgroup U ′
w of Ru(Pλ), as in [7, V.21.14]. For each w ∈ kW

J , let ẇ be
a representative of w in NG(S)(k). Then, by [7, V.21.16 and V.21.29] or [9, 3.16
proof], we have

(3.11) G(k) =
⋃

w∈kWJ

U ′
w(k)ẇPλ(k)

and

(3.12) ẇ−1U ′
wẇ ⊆ Ru(P−λ) for each w ∈ kW

J .
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Since G(k) · v is cocharacter-closed over k, there exists g ∈ G(k) such that
v′ = g · v. By (3.11) and Lemma 2.5, we have g = u′ẇlu for some w ∈ kW

J ,
u′ ∈ U ′

w(k), l ∈ Lλ(k) and u ∈ Ru(Pλ)(k). Now the argument splits into two cases.
Put n = ẇ.

Case 1. n normalizes Vλ,0. Then n−1u′nlu · v = n−1 · v′ ∈ Vλ,0. Furthermore,
n−1u′n ∈ Ru(P−λ) by (3.12), so n−1u′nl ∈ P−λ. The desired conclusion follows
from Lemma 2.13.

Case 2. n does not normalize Vλ,0. Let Φ be the set of weights of S on V and for
ν ∈ Yk(S) let Φν,≥0 be the set of weights χ ∈ Φ such that 〈ν, χ〉 ≥ 0. We have
v′ = u′nlu · v and therefore n−1u′−1 · v′ = lu · v. Furthermore, u′−1 · v′ − v′ ∈ Vλ,>0

by (2.11), whence suppS(v
′) ⊆ suppS(u

′−1 · v′). Now n−1 normalizes S, so

n−1 · suppS(v′) ⊆ n−1 · suppS(u
′−1 · v′) = suppS(n

−1u′−1 · v′) ⊆ Φλ,≥0,

since n−1u′−1 ·v′ = lu·v ∈ Vλ,≥0. It follows that suppS(v
′) ⊆ n·Φλ,≥0 = Φn·λ,≥0. So

v′′ := lima→0(n ·λ)(a) ·v′ exists. We can choose γ ∈ Yk(G) of the form γ = tλ+n ·λ
for t ∈ N sufficiently large such that the following hold:

(1) Vγ,0 ⊆ Vλ,0 and Vγ,0 ⊆ Vn·λ,0;
(2) v′′ = lima→0 γ(a) · v;
(3) v′′ = lima→0 γ(a) · v′;
(4) Pγ ⊆ Pλ.

Properties (1), (2) and (4) follow immediately from Lemma 2.15, while (3) follows
from (2), since lima→0(n · λ)(a) · v′ = v′′ and λ(k∗) fixes v′. If Vλ,0 = Vγ,0, then
Vλ,0 ⊆ Vn·λ,0 = n · Vλ,0, so Vλ,0 = n · Vλ,0, contradicting the fact that n does not
normalize Vλ,0. Hence we must have dimVγ,0 < dimVλ,0. Now G(k) · v′ = G(k) · v
is cocharacter-closed over k. So, by the induction hypothesis, v and v′ are both
Ru(Pγ)(k)-conjugate — and hence Pγ(k)-conjugate — to v′′, and hence v and v′

are Pγ(k)-conjugate. By (4), v and v′ are Pλ(k)-conjugate. But then they are
Ru(Pλ)(k)-conjugate, by Lemmas 2.5 and 2.13. �

In view of Theorems 3.1, 3.3 and 3.10, it is natural to ask the following rationality
question.

Question 3.13. Let V be a k-defined affine G-variety. Let v ∈ V such that
CG(ks)(v) is Γ-stable. Suppose k1/k is an algebraic extension. Is it true that
G(k1) · v is cocharacter-closed over k1 if and only if G(k) · v is cocharacter-closed
over k?

Our final result in this section gives an affirmative answer to the forward impli-
cation of Question 3.13 in two instances.

Theorem 3.14. Let k1/k be an algebraic extension of fields and let V be a k-defined
affine G-variety. Let v ∈ V such that CG(ks)(v) is Γ-stable. Suppose that (i) G is
connected and k1/k is separable, or (ii) k is perfect. If G(k1)·v is cocharacter-closed
over k1, then G(k) · v is cocharacter-closed over k.

Proof. Suppose λ ∈ Yk(G) such that v′ = lima→0 λ(a) · v exists. Then λ ∈ Yk1
(G).

Since G(k1)·v is cocharacter-closed over k1, v
′ is Ru(Pλ)(k1)-conjugate to v, by The-

orem 3.10 in case (i) and Theorem 3.3 in case (ii). Since k1/k is separable, Theorem
3.1 implies that v′ is Ru(Pλ)(k)-conjugate to v. Hence G(k) ·v is cocharacter-closed
over k, as required. �
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Remarks 3.15. (i). If v ∈ V (k), then the reverse direction holds for k perfect in
Theorem 3.14 and the answer to Question 3.13 is yes: this follows from Corollary
4.11 below.

(ii). For arbitrary k it can happen that G(k) · v is not cocharacter-closed over
k but G · v is closed or vice versa, even when v ∈ V (k) (see Remark 5.10; cf. also
Remark 4.10(ii)).

4. Uniform S-instability

In this section we show that the results of Kempf in [15] extend to uniform insta-
bility as defined by W. Hesselink in [12]. Since this is a straightforward modification
of Kempf’s arguments, we only indicate the relevant changes. We point out here
that the extension to non-connected G is unnecessary for the results in this section,
since they follow immediately from the corresponding statements for G connected.
We state the results for G non-connected, because this is more convenient for our
applications. As our field k is not necessarily algebraically closed, we restrict to
k-defined cocharacters of G in Kempf’s optimization procedure; cf. [12].

Throughout this section, G is a reductive k-defined normal subgroup of a k-
defined linear algebraic group G′ which acts on an affine k-variety V , and S is a
non-empty G-stable closed subvariety of V .

Definition 4.1. A G′(k)-invariant norm on Yk(G) is a non-negative real-valued
function ‖ ‖ on Yk(G) such that

(i) ‖g · λ‖ = ‖λ‖ for any g ∈ G′(k) and any λ ∈ Yk(G),
(ii) for any k-split k-defined torus T of G, there is a positive definite integer-

valued form ( , ) on Yk(T ) such that (λ, λ) = ‖λ‖2 for any λ ∈ Yk(T ).

If k = k, then we speak of a G′-invariant norm on Y (G), and in this case we
say that ‖ ‖ on Y (G) is k-defined if it is Γ-invariant (see [15, Sec. 4]). Note that
a G′-invariant norm ‖ ‖ on Y (G) determines a G′(k)-invariant norm on Yk(G). A
k-defined G′-invariant norm on Y (G) always exists, by the argument of [12, 1.4].

Definition 4.2. For each non-empty subset X of V , define Λ(X) as the set of λ ∈
Y (G) such that lim

a→0
λ(a) · x exists for all x ∈ X, and put Λ(X, k) = Λ(X)∩ Yk(G).

Extending Hesselink [12], we call X uniformly S-unstable if there exists λ ∈ Λ(X)
such that lim

a→0
λ(a) · x ∈ S for all x ∈ X, and we say that such a cocharacter

destabilizes X into S or is a destabilizing cocharacter for X with respect to S. We
call X uniformly S-unstable over k if there exists such a λ in Λ(X, k). We say that
x ∈ V is S-unstable over k if {x} is uniformly S-unstable over k. Finally, (uniformly
S-) unstable without specifying a field always means (uniformly S-) unstable over k.
By the Hilbert-Mumford Theorem, x ∈ V is S-unstable if and only if G · x∩S �= ∅.

Remark 4.3. Following Hesselink [12, (2.1)], we allow the trivial case thatX ⊆ S. In
this case the optimal class of Definition 4.4 below consists just of the trivial cochar-
acter λ = 0 and the optimal destabilizing parabolic subgroup of Definition 4.6 is the
whole of G. Kempf [15, Thm. 3.4] only defines the optimal class and optimal desta-
bilizing parabolic subgroup if X = {x} and x /∈ S and in this case our definitions
coincide with his.

Let x ∈ V and let λ ∈ Λ(x). Let ϕ : k → V be the morphism φ̂x,λ from
Section 2.3. If x /∈ S, then the scheme-theoretic inverse image ϕ−1(S) is either
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empty or has affine ring k[T ]/(Tm) for a unique m ∈ N, and we define aS,x(λ) := m
(taking m to be 0 if ϕ−1(S) is empty). If x ∈ S, then we define aS,x(λ) := ∞. For
a non-empty subset X of V and λ ∈ Λ(X), we define aS,X(λ) := minx∈X aS,x(λ).
Note that aS,X(λ) > 0 if and only if lim

a→0
λ(a) · x ∈ S for all x ∈ X, aS,X(λ) = 0 if

and only if lim
a→0

λ(a) ·x �∈ S for some x ∈ X, and aS,X(λ) = ∞ if and only if X ⊆ S.

Now we choose a G′(k)-invariant norm ‖ ‖ on Yk(G).

Definition 4.4. Let X be a non-empty subset of V . If X ⊆ S, we put Ω(X,S, k) =
{0}, where 0 denotes the trivial cocharacter of G. Now assume X � S. If the
function λ �→ aS,X(λ)/‖λ‖ has a finite strictly positive maximum value on Λ(X, k)\
{0}, then we define Ω(X,S, k) as the set of indivisible cocharacters in Λ(X, k) \ {0}
on which this function takes its maximum value. Otherwise we define Ω(X,S, k) =
∅. Note that X is uniformly S-unstable over k (in the sense of Definition 4.2)
provided Ω(X,S, k) �= ∅. The set Ω(X,S, k) is called the optimal class for X with
respect to S over k.

We are now able to state and prove the analogue of Kempf’s instability theorem
([15, Thm. 4.2]) in this setting.

Theorem 4.5. Let X be a non-empty subset of V which is uniformly S-unstable
over k. Then Ω(X,S, k) is non-empty and has the following properties:

(i) lim
a→0

λ(a) · x ∈ S for all λ ∈ Ω(X,S, k) and any x ∈ X.

(ii) For all λ, μ ∈ Ω(X,S, k), we have Pλ = Pμ. Let P (X,S, k) denote the unique
R-parabolic subgroup of G so defined. (Note that P (X,S, k) is k-defined by
Lemma 2.5.)

(iii) If g ∈ G′(k), then Ω(g · X, g · S, k) = g · Ω(X,S, k) and P (g · X, g · S, k) =
gP (X,S, k)g−1.

(iv) Ru(P (X,S, k))(k) acts simply transitively on Ω(X,S, k): that is, for each k-
defined R-Levi subgroup L of P (X,S, k), there exists one and only one λ ∈
Ω(X,S, k) with L = Lλ. Moreover, NG(k)(X) ⊆ P (X,S, k)(k).

Proof. If X ⊆ S, then Ω(X,S, k) = {0} and P (X,S, k) = G, so all the statements
are trivial in this case. Hence we may assume that X �⊆ S. We have that G0

is k-defined and, clearly, Yk(G) = Yk(G
0) and Ru(Pλ) = Ru(Pλ(G

0)). So we
may assume that G is connected. We use Kempf’s “state formalism”, [15, Sec. 2].
Actually we may consider states as only defined on k-split subtori of G. First we
need an analogue over k of [15, Thm. 2.2]. This is completely straightforward: we
simply work with Yk(G) instead of Y (G) and use the conjugacy of the maximal
k-split tori of G under G(k), [7, V.20.9(ii)], as in [12]. We also use the result that
two k-defined parabolic subgroups of G have a common maximal k-split torus [7,
V.20.7 Prop.].

Next we need a way to associate to a non-empty finite subset X0 �= {0} of a
rational G-module V0 a bounded admissible state. This is done as in [12, 2.4].
Then [15, Lem. 3.2] holds with V and v replaced by V0 and X0, respectively.

Finally, we need to construct two bounded admissible states as in [15, Lem. 3.3].
This is done precisely as in the proof of loc. cit. The embedding of V in a rational
G-module V0 (denoted V in loc. cit.) and the morphism f : V → W , W a rational
G-module, with the scheme-theoretic preimage f−1(0) equal to S, can be chosen
as in [15, Thm. 3.4]. Let Ξ and Υ be the state of X in V0 and the state of f(X) in
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W , respectively. Then assertions (i), (ii), (iii) and the first assertion of (iv) follow
as in [15].

The final assertion of (iv) is proved as follows. Fix λ ∈ Ω(X,S, k). Let g ∈
NG(k)(X). Then g · Ω(X,S, k) = Ω(g ·X, g · S, k) = Ω(X,S, k), by (iii) (note that
g ·S = S). So g · λ ∈ Ω(X,S, k). By the first assertion of (iv), g · λ = u · λ for some

u ∈ Ru(P (X,S, k))(k). So u−1g ∈ CG(λ(k
∗
)) = Lλ ⊆ P (X,S, k) and therefore

g ∈ P (X,S, k) ∩G(k) = P (X,S, k)(k). �
Definition 4.6. We call P (X,S, k) from Theorem 4.5 the optimal destabilizing
R-parabolic subgroup for X with respect to S over k. It is clear that if P (X,S, k)
is a proper subgroup of G, then X �⊆ S. If k is algebraically closed, then we often
suppress the k argument and write simply Ω(X,S) and P (X,S).

Next we discuss rationality properties of this construction. If X is uniformly S-
unstable over k and k1/k is a field extension, then X is uniformly S-unstable over
k1. We want to investigate the relationship between P (X,S, k) and P (X,S, k1). It
appears that one can say little in general if k1/k is not separable, so we consider the
special case when k1 = ks. We denote the k-closure of X by Xk; cf. [7, AG.11.3].
We obtain a rationality result as in [12, Thm. 5.5].

We now choose a G′-invariant norm ‖ ‖ on Y (G). Note that this determines a
G(k1)-invariant norm on Yk1

(G) for any subfield k1 of k.

Theorem 4.7. Assume that V is an affine k-variety and that S and the action of
G on V are k-defined. Let X be a non-empty subset of V . Then the following hold:

(i) X is uniformly S-unstable over k if and only if Xk is uniformly S-unstable
over ks.

(ii) Assume that X is uniformly S-unstable over k and that the norm ‖ ‖ on
Y (G) is k-defined. Then Ω(X,S, k) consists of the k-defined cocharacters in
Ω(Xk, S, ks). In particular, the cocharacters in Ω(X,S, k) are optimal for Xk

over ks.

Proof. The embedding V ↪→ V0 and the morphism f : V → W of the proof of
Theorem 4.5 can chosen to be defined over k; see [7, I.1.9] and the proof of [15,
Lem. 1.1]. One can then easily check that for λ ∈ Yk(G) and any integer r,

(4.8) the set {x ∈ V | λ ∈ Λ(x), aS,x(λ) ≥ r} is k-closed;

cf. the proof of [12, Thm. 5.5]. It follows that Λ(X, k) = Λ(Xk, k) and that
aS,X(λ) = aS,Xk(λ) for all λ ∈ Λ(X, k).

So we may assume that X is k-closed. We have to show that if X is uniformly
S-unstable over ks, then Ω(X,S, ks) contains a k-defined cocharacter. If Z is a
k-variety (over k), then Γ = Gal(ks/k) acts on the set Z and the k-closed subsets
of Z are the Γ-stable closed subsets of Z; see [35, 11.2.8(ii)]. Furthermore, if Z1

and Z2 are k-varieties, then Γ acts on the ks-defined morphisms from Z1 to Z2 and
such a morphism is k-defined if and only if it is fixed by Γ; see [35, 11.2.9]. So in
our case Γ acts on the sets G and V and X is Γ-stable. Now we can finish the proof
as in [15, Thm. 4.2] or [12, Thm. 5.5]. �
Corollary 4.9. Suppose the hypotheses of Theorem 4.7 hold and that ‖ ‖ is k-
defined. Let k1/k be a separable algebraic extension. Then X is uniformly S-
unstable over k if and only if Xk is uniformly S-unstable over k1, and in this case
we have Ω(X,S, k) = Ω(Xk, S, k1) ∩ Yk(G) and P (X,S, k) = P (Xk, S, k1).
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Remarks 4.10. (i). Hesselink’s optimal class consists in general of virtual cocharac-
ters, since, essentially, he requires aS,X(λ) = 1 (he minimizes the norm). We work
with Kempf’s optimal class which consists of indivisible cocharacters. There is an
obvious bijection between the two optimal classes.

(ii). If k is not perfect, then X can be S-unstable over k but need not be S-
unstable over k (see Remark 5.10). Even when X is S-unstable over both k and
k, our methods do not tell us whether or not P (X,S, k) = P (X,S) when k is not
perfect.

(iii). Assume that k is perfect and that X = {v} with v a k-point of V outside
S whose G-orbit closure meets S. Then Corollary 4.9 gives the existence of a k-
defined destabilizing cocharacter for v and S which is optimal over k. This was
first proved by Kempf in [15, Thm. 4.2].

Corollary 4.11 below and Corollary 4.9 answer Question 3.13 for perfect k.

Corollary 4.11. Suppose that k is perfect. Let V be an affine G-variety over k.
Let v ∈ V (k). Then G · v is closed if and only if G(k) · v is cocharacter-closed over
k.

Proof. If G(k) · v is not cocharacter-closed over k, then G · v is not closed, by
Corollary 3.7. Conversely, suppose G · v is not closed. Let S be the unique closed
G-orbit in G · v. Then G · v is k-defined (see, e.g., [35, 1.9.1]). Let γ ∈ Γ. Then
γ(S) is a closed G-orbit which is contained in G · v, so it is equal to S. It follows
that S is Γ-stable and therefore k-defined, since k is perfect. Now v is S-unstable by
the Hilbert-Mumford Theorem and therefore S-unstable over k, by Theorem 4.7(i).
Since S ∩G · v = ∅, it is clear that G(k) · v is not cocharacter-closed over k. �

5. Applications to G-complete reducibility

In this section we discuss some applications of the theory developed in this paper,
with particular reference to Serre’s concept of G-complete reducibility. We briefly
recall the definitions here; for more details, see [1], [34].

Definition 5.1. A subgroup H of G is said to be G-completely reducible (G-cr)
if whenever H is contained in an R-parabolic subgroup P of G, there exists an
R-Levi subgroup L of P containing H. Similarly, a subgroup H of G is said to be
G-completely reducible over k if whenever H is contained in a k-defined R-parabolic
subgroup P of G, there exists a k-defined R-Levi subgroup L of P containing H.

We have noted (Remark 2.4) that not every k-defined R-parabolic subgroup of G
need stem from a cocharacter in Yk(G). However, our next result shows that when
considering questions of G-complete reducibility over k, it suffices just to look at
k-defined R-parabolic subgroups of G of the form Pλ with λ ∈ Yk(G).

Lemma 5.2. Let H be a subgroup of G. Then H is G-completely reducible over
k if and only if for every λ ∈ Yk(G) such that H is contained in Pλ, there exists
μ ∈ Yk(G) such that Pλ = Pμ and H ⊆ Lμ.

Proof. Assume that for every λ ∈ Yk(G) such that H is contained in Pλ, there
exists μ ∈ Yk(G) such that Pλ = Pμ and H ⊆ Lμ. Let σ ∈ Y (G) such that Pσ is
k-defined and H ⊆ Pσ. After conjugating σ by an element of Pσ, we may assume
that σ ∈ Y (T ) for some k-defined maximal torus T of Pσ. By Lemma 2.5(ii), there
exists λ ∈ Yk(T ) such that Pσ ⊆ Pλ and P 0

σ = P 0
λ . Note that Lσ = Lλ ∩ Pσ,
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by Lemma 2.2. By assumption, there exists μ ∈ Yk(G) such that Pλ = Pμ and
H ⊆ Lμ. There exists u ∈ Ru(Pλ) = Ru(Pσ) such that uLλu

−1 = Lμ. But then
Lu·σ = uLσu

−1 = u(Lλ ∩ Pσ)u
−1 = Lμ ∩ Pσ contains H. By Lemma 2.5(iii), Lu·σ

is k-defined, since L0
u·σ = L0

μ is k-defined. Hence H is G-cr over k. The other
implication follows from Corollary 2.6. �
Remark 5.3. If k is algebraically closed (or even perfect; see [1, Thm. 5.8]) and H
is k-defined, then H is G-cr over k if and only if H is G-cr.

5.1. Geometric criteria for G-complete reducibility. In [1], we show that G-
complete reducibility has a geometric interpretation in terms of the action of G on
Gn, the n-fold Cartesian product of G with itself, by simultaneous conjugation. Let
h ∈ Gn and let H be the algebraic subgroup of G generated by h. Then G · h is
closed in Gn if and only if H is G-cr [1, Cor. 3.7]. To generalize this to subgroups
that are not topologically finitely generated, we need the following concept.

Definition 5.4. Let H be a subgroup of G and let G ↪→ GLm be an embedding
of algebraic groups. Then h ∈ Hn is called a generic tuple of H for the embedding
G ↪→ GLm if h generates the associative subalgebra of Matm spanned by H. We
call h ∈ Hn a generic tuple of H if it is a generic tuple of H for some embedding
G ↪→ GLm.

Clearly, generic tuples exist for any embedding G ↪→ GLm if n is sufficiently
large. The next lemma gives the main properties of generic tuples.

Lemma 5.5. Let H be a subgroup of G, let h ∈ Hn be a generic tuple of H for
some embedding G ↪→ GLm and let H ′ be the algebraic subgroup of G generated by
h. Then we have:

(i) CM (h) = CM (H ′) = CM (H) for any subgroup M of G;
(ii) H ′ is contained in the same R-parabolic and the same R-Levi subgroups of G

as H;
(iii) if H ⊆ Pλ for some λ ∈ Y (G), then cλ(h) is a generic tuple of cλ(H) for the

given embedding G ↪→ GLm.

Proof. By assumption, h generates the associative subalgebra A of Matm spanned
by H. For λ ∈ Y (GLm) let Pλ be the subset of elements x ∈ Matm such that
lim
a→0

λ(a) · x exists and let Lλ be the centralizer of λ(k∗) in Matm. Denote the

limit morphism Pλ → Lλ by cλ. The well-known characterization of Pλ and Lλ

in terms of flags of subspaces shows that they are subalgebras of Matm and that
cλ is a homomorphism of algebras. For λ ∈ Y (G) we have Pλ(G) = G ∩ Pλ and
Lλ(G) = G ∩ Lλ.

(i). If a subset S of Matm generates the associative subalgebra E of Matm, then
CM (S) = M ∩ CMatm(E). So CM (H) = CM (H ′) = M ∩ CMatm(A) = CM (h).

(ii). If a subset S of G generates the associative subalgebra E of Matm, then
S ⊆ Pλ(G) if and only if E ⊆ Pλ, and S ⊆ Lλ(G) if and only if E ⊆ Lλ. This
implies the assertion.

(iii). Since cλ : Pλ → Lλ is a homomorphism of associative algebras, cλ(h)
generates the associative subalgebra cλ(A) and this is also the associative subalgebra
of Matm generated by cλ(H). �
Remark 5.6. If H is a subgroup of G which is topologically generated by a tuple
h ∈ Hn, then h is a generic tuple of H in the sense of Definition 5.4. To see this,
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consider an embedding G ↪→ GLm. Since the minimal polynomial of each hi has
non-zero constant term, we can express h−1

i as a polynomial in hi. Hence, if A is
the associative subalgebra of Matm generated by h, then A contains the inverses
of each of the components hi, so it contains the subgroup of GLm generated by h.
But A is closed, so it contains H.

Remark 5.7. Let H be a k-defined subgroup of G. Even if H is topologically finitely
generated, there need not exist a k-defined generating tuple. The notion of a generic
tuple lets us get around this problem. Note that if h is a generic tuple of H, then
CG(ks)(h) is Γ-stable by Lemma 5.5(i), which is a sufficient condition for many of
the results in Section 3 to hold. Another advantage of generic tuples is that one
can extend the action of Sn on an n-tuple by permutation of the components (cf.
[1, Thm. 5.8]) to an action of GLn(k) (cf. [5, Sec. 3.8]).

The connection between G-complete reducibility and G-orbits of tuples is made
transparent by part (iii) of the following theorem which is, essentially, a consequence
of Theorem 3.3. It also shows how statements about generic tuples can be translated
back into statements about subgroups of G. Note that, in view of Remark 5.6, the
final statement of Theorem 5.8(iii) recovers [1, Cor. 3.7].

Theorem 5.8.

(i) Let n ∈ N, let h ∈ Gn and let λ ∈ Y (G) such that m := lima→0 λ(a) ·h exists.
Then the following are equivalent:
(a) m is G-conjugate to h;
(b) m is Ru(Pλ)-conjugate to h;
(c) dimG ·m = dimG · h.

(ii) Let H be a subgroup of G and let λ ∈ Y (G). Suppose H ⊆ Pλ and set
M = cλ(H). Then dimCG(M) ≥ dimCG(H) and the following are equivalent:
(a) M is G-conjugate to H;
(b) M is Ru(Pλ)-conjugate to H;
(c) H is contained in an R-Levi subgroup of Pλ;
(d) dimCG(M) = dimCG(H).

(iii) Let H, λ and M be as in (ii) and let h ∈ Hn be a generic tuple of H. Then
the assertions in (i) are equivalent to those in (ii). In particular, H is G-
completely reducible if and only if G · h is closed in Gn.

Proof. (i). It is obvious that (b) implies (a) and (a) implies (c). It follows immedi-
ately from Theorem 3.3 and [7, Prop. I.1.8] that (c) implies (b).

(ii) and (iii). Let h ∈ Hn, let H ′ be the algebraic subgroup of G generated by
h and let λ ∈ Y (G). Then lima→0 λ(a) · h exists if and only if H ′ ⊆ Pλ. Now
assume that m = lima→0 λ(a) · h exists. Let u ∈ Ru(Pλ). Then h = u ·m if and
only if u · λ fixes h (Lemma 2.12) if and only if H ′ ⊆ Lu·λ = uLλu

−1. Pick a
generic tuple h ∈ Hn of H for some n ∈ N. Then m = cλ(h) is a generic tuple
of M , by Lemma 5.5(iii). Now the first assertion of (ii) follows from the fact that
dimG ·m ≤ dimG · h (see [7, Prop. I.1.8]), since dimG · h = dimG− dimCG(h),
which equals dimG−dimCG(H) (Lemma 5.5(i)), and likewise form. Now we prove
the equivalences. Clearly, (b) implies (a) and (a) implies (d). Furthermore, we have
for u ∈ Ru(Pλ) that H ⊆ Lu·λ if and only if H = cu·λ(H) = uMu−1. So (b) is
equivalent to (c). Now assume that (d) holds. Then dimG ·m = dimG ·h. So m is
Ru(Pλ)-conjugate to h, by (i), whence H ′ is Ru(Pλ)-conjugate to cλ(H

′). By the
equivalence of (b) and (c) (applied to H ′), H ′ is contained in an R-Levi subgroup



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

3662 M. BATE, B. MARTIN, G. RÖHRLE, AND R. TANGE

of Pλ. Since h is a generic tuple of H, (c) holds by Lemma 5.5(ii). Lemma 5.5(i)
implies that (i)(c) and (ii)(d) are equivalent, so the first assertion of (iii) holds. The
final assertion of (iii) follows from the first, Lemma 5.5(ii) and the Hilbert-Mumford
Theorem. �

We now give a geometric characterization of G-complete reducibility over an
arbitrary field k, using Theorem 3.10. Note that the subgroup H in Theorem 5.9
need not be k-defined. In view of Remark 3.9, Theorem 5.9 in the special case
k = k yields the final assertion of Theorem 5.8(iii).

Theorem 5.9. Suppose that G is connected. Let H be a subgroup of G and let
h ∈ Hn be a generic tuple of H. Then H is G-completely reducible over k if and
only if G(k) · h is cocharacter-closed over k.

Proof. Suppose that G(k) · h is cocharacter-closed over k. In order to show that
H is G-cr over k, we just need to consider R-parabolic subgroups of G containing
H of the form Pλ with λ ∈ Yk(G), by Lemma 5.2. Let λ ∈ Yk(G) be such that
Pλ contains H. Then h′ := cλ(h) exists. Since G(k) · h is cocharacter-closed over
k, there exists u ∈ Ru(Pλ)(k) such that h′ = u · h, by Theorem 3.10. By Lemma
2.12, u−1 · λ centralizes h. Hence H ⊆ Lu−1·λ. Since Lu−1·λ is k-defined, H is
G-completely reducible over k.

Now assume that H is G-completely reducible over k. Let λ ∈ Yk(G) such that
h′ := cλ(h) exists. Then H ⊆ Pλ. So, by hypothesis, there exists a k-defined R-
Levi subgroup L of Pλ with H ⊆ L. By Lemma 2.5(iii), there exists u ∈ Ru(Pλ)(k)

such that L = u
−1

Lλu = Lu−1 ·λ. Hence u
−1 · λ centralizes H and so u

−1 · λ
centralizes h. Thus, by Lemma 2.12, we have h′ = u · h. Consequently, G(k) · h is
cocharacter-closed over k. �

Remark 5.10. We now provide examples for the failure of Question 3.13 in general.
In [4, Ex. 7.22], we give an example of a reductive group G and a subgroup H, both
k-defined, such that H is G-completely reducible but not G-completely reducible
over k. Let h ∈ Hn be a generic tuple of H. Then, by Theorem 5.9, G · h is closed
in Gn but G(k) ·h is not cocharacter-closed over k. Conversely, an example due to
McNinch, [1, Ex. 5.11], gives a reductive group G and a subgroupH, both k-defined,
such that H is G-completely reducible over k but not G-completely reducible, and
this implies that there exists a generic tuple h ∈ Hn for some n ∈ N such that
G(k) · h is cocharacter-closed over k but G · h is not closed. Hence h is uniformly
S-unstable over k but not uniformly S-unstable over k, where S is the unique closed
G-orbit contained in G · v. In fact, we have S = {(1, . . . , 1)} in this example, so
S has a k-point. Note that CG(ks)(h) is Γ-stable in both cases (this follows from
Lemma 5.5(i)), so we have counterexamples to Question 3.13; moreover, in both
cases the extension k/k is not separable.

We even have an example where v ∈ V (k), k is infinite, G · v is not closed and
G(k) · v is a Zariski-closed subset of V (k). Let k be a separably closed non-perfect
field of characteristic 2 and let G = GL2 acting on V = GL2 by conjugation.

Choose a ∈ k1/2 \ k. Let v =

(
0 1
a2 0

)
and let v′ =

(
a 0
0 a

)
(cf. [35, 2.4.11]).

It is easily checked that the closure of G · v is G · v ∪ {v′}. Moreover, the orbit
map G → G · v, g �→ g · v is separable (cf. [1, Ex. 3.28 and Rem. 3.31]) and hence
is surjective on k-points [7, AG.13.2 Thm.]. This implies that G(k) · v is closed
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in V (k) (and hence is cocharacter-closed over k, by Remark 3.9(ii)). The unique
closed G-orbit S contained in G · v has no k-points — in contrast to the previous
example — and it follows that v is uniformly S-unstable over k but not uniformly
S-unstable over k.

The interpretation of G-complete reducibility in terms of orbits allows us to
provide a partial answer to a question of Serre; for a more general result, see
[5, Thm. 4.13]. Let k1/k be a separable algebraic extension of fields. Serre has
asked whether it is the case that a k-defined subgroup H of G is G-completely
reducible over k if and only if it is G-completely reducible over k1. This was proved
in [1, Thm. 5.8] for k perfect by passing back and forth between k and k and
between k1 and k. In general this approach fails because the extension k/k need
not be separable; we discuss this further in Example 5.21 below. This shows that
even if one is interested only in separable field extensions k1/k, problems with
inseparability can arise.

We can now answer one direction of Serre’s question. Theorem 5.11 gives a
group-theoretic analogue of Theorem 3.14.

Theorem 5.11. Suppose k1/k is a separable extension of fields. Let H be a
k-defined subgroup of G. If H is G-completely reducible over k1, then H is G-
completely reducible over k.

Proof. Let h ∈ Hn be a generic tuple of H for some n. Suppose λ ∈ Yk(G) is
such that H ⊆ Pλ. Then since H is G-cr over k1, there exists u1 ∈ Ru(Pλ)(k1) ⊆
Ru(Pλ)(ks) such that H ⊆ Lu1

−1·λ. Thus, u1
−1 · λ centralizes H and so u1

−1 · λ
centralizes h. It thus follows from Lemma 2.12 that lima→0 λ(a) · h = u1 · h. Now
CG(ks)(h) is Γ-stable by Remark 5.7, so we can apply Theorem 3.1 to conclude that

there exists u ∈ Ru(Pλ)(k) such that lima→0 λ(a) · h = u · h. Thus u−1 · λ ∈ Yk(G)
centralizes h (Lemma 2.12), whence u−1 · λ centralizes H (Lemma 5.5(ii)). We
therefore have H ⊆ Lu−1·λ, a k-defined R-Levi subgroup of Pλ, as required. �
Example 5.12. We show that the answer to Serre’s question is yes when G =
GL(V ), where V = k

n
with the standard k-structure kn on V . This of course

determines the usual k-structure on GL(V ). Let H be a subgroup of G and let A
be its enveloping algebra: that is, the k-span of H in Endk(V ). Then A is k-defined
provided H is. To see this, we exhibit a Γ-stable, dense subset of separable points
in A and for this set we simply take the ks-span of H(ks) in Endk(V ). As a con-
sequence, we obtain the following characterization of GL(V )-complete reducibility
over k under the assumption that H is k-defined: H is GL(V )-cr over k if and
only if V (k) = kn is a semisimple A(k)-module (if and only if A(k) is a semisimple
algebra). Here A(k) denotes the algebra of k-points of A (this is a k-structure on
A: A = k ⊗k A(k)).

Finally, if H and A are as above and k1 ⊆ k is an algebraic extension of k, then
A(k1) = k1 ⊗k A(k). It follows from [10, Cor. 69.8 and Cor. 69.10] that A(k) is
semisimple if and only if A(k1) is semisimple, provided k1 is a separable extension of
k. By the above this means that H is GL(V )-cr over k if and only if H is GL(V )-cr
over k1.

5.2. Optimal destabilizing parabolic subgroups for subgroups of G. In this
section we assume G is a normal k-subgroup of a k-defined linear algebraic group
G′. If G′ is not explicitly given, we just take G′ to be G. We fix a G′-invariant
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norm ‖ ‖ on Y (G); see Definition 4.1. Recall our convention that Pλ is a subgroup
of G: so the optimal destabilizing subgroups defined below are parabolic subgroups
of G, not of G′.

Let H be a subgroup of G such that H is not G-completely reducible. Suppose
there exists h ∈ Hn such that H is generated by h. Then G ·h is not closed in Gn,
and we can construct the optimal destabilizing parabolic subgroup Ph = P (h, S)
of G for h, where S is the unique closed G-orbit contained in G · h. Several recent
results involving G-complete reducibility have rested on this construction [21], [1,
Sec. 3, Thm. 5.8], [4, Thm. 5.4(a)]. There are some technical problems in applying
it. For instance, if g ∈ G normalizes H, then g need not centralize h (cf. the proof
of [4, Prop. 5.7]).

We now show how to associate an optimal destabilizing R-parabolic subgroup
P (H) to H using uniform S-instability. This avoids the above problems and yields
shorter, cleaner proofs, because we need not deal explicitly with a generating tuple
for H.

Remark 5.13. We can regard the following construction as a generalization of the
Borel-Tits construction [8], which associates to a non-trivial unipotent element
u ∈ G a parabolic subgroup PBT of G such that u ∈ Ru(PBT). More generally,
the latter construction associates to a non-reductive subgroup H of G a parabolic
subgroup PBT of G such that Ru(H) ⊆ Ru(PBT). Our construction works for
any non-G-completely reducible H, including the case when H is reductive. Note,
however, that if H is non-reductive, then PBT does not necessarily coincide with
P (H) from Definition 5.17, [12, Rem. 8.4].

First we need a preliminary result which gives us a closed G-stable subvariety
Sn(M) of Gn to work with. The idea is that the G-conjugacy class of a generic tuple
of the group M from Proposition 5.14 corresponds to the unique closed G-orbit in
the G-orbit closure of a generic tuple of H.

Proposition 5.14. Let H be a subgroup of G.

(i) There exists λ ∈ Y (G) and a G-completely reducible subgroup M of G such
that H ⊆ Pλ and cλ(H) = M . Moreover, M is unique up to G-conjugacy and
its G-conjugacy class depends only on the G-conjugacy class of H.

(ii) Any automorphism of the algebraic group G that stabilizes the G-conjugacy
class of H stabilizes the G-conjugacy class of M .

(iii) Any γ ∈ Γ that stabilizes the G-conjugacy class of H stabilizes the G-conjugacy
class of M .

(iv) If μ ∈ Y (G) and H ⊆ Pμ, then the procedure described in (i) associates the
same G-conjugacy class of subgroups to H and cμ(H).

Proof. (i). Let Pλ be an R-parabolic subgroup of G which is minimal with respect to
containing H. Since H ⊆ cλ(H)Ru(Pλ) and Ru(Pλ) ⊆ Ru(Q) for every R-parabolic
subgroup Q of G with Q ⊆ Pλ, we have that Pλ is also minimal with respect to
containing M = cλ(H). So M is Lλ-irreducible and therefore G-cr; see [1, Cor. 6.4,
Cor. 3.22].

Now suppose λ, μ ∈ Y (G) such that H ⊆ Pλ and H ⊆ Pμ, and such that M1 =
cλ(H) andM2 = cμ(H) are G-cr. Since Pλ and Pμ have a maximal torus in common
(see, e.g., [7, Cor. IV.14.13]), after possibly replacing M1 by an Ru(Pλ)-conjugate
and M2 by an Ru(Pμ)-conjugate, we may assume that λ(k∗) and μ(k∗) commute.
Clearly, Pλ∩Pμ is stable under cλ and cμ. It follows from [1, Lem. 6.2(iii)] that, on
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Pλ∩Pμ, the composition cλ ◦ cμ = cμ ◦ cλ is the projection Pλ∩Pμ → Lλ∩Lμ with
kernel Ru(Pλ∩Pμ). So cλ(M2) = cμ(M1). Now M1 is G-cr, so, by Theorem 5.8(ii),
M1 is Ru(Pμ)-conjugate to cμ(M1). Similarly, M2 is Ru(Pλ)-conjugate to cλ(M2).
So M1 and M2 are G-conjugate. Finally, we observe that if H ⊆ Pλ and g ∈ G,
then gHg−1 ⊆ Pg·λ and cg·λ(gHg−1) = gcλ(H)g−1, so the G-conjugacy class of M
only depends on that of H.

(ii). Let ϕ be an automorphism of the algebraic group G that stabilizes the G-
conjugacy class of H and let λ ∈ Y (G) such that H ⊆ Pλ and cλ(H) is G-cr. Then
ϕ(H) is G-conjugate to H and ϕ(H) ⊆ Pϕ◦λ. Now ϕ(cλ(H)) = cϕ◦λ(ϕ(H)) is
G-conjugate to cλ(H) by (i), since cλ(H) is G-cr.

(iii). Let γ ∈ Γ such that γ stabilizes the G-conjugacy class of H and let λ ∈
Y (G) such that H ⊆ Pλ and cλ(H) is G-cr. Then γ ·H is G-conjugate to H and
γ ·H ⊆ Pγ·λ. Now γ ·M is G-cr by Lemma 2.3, so γ ·M = γ · (cλ(H)) = cγ·λ(γ ·H)
is G-conjugate to cλ(H) by (i).

(iv). Assume that H ⊆ Pμ and let λ ∈ Y (G) such that H ⊆ Pλ and cλ(H)
is G-cr. After replacing λ by a Pλ-conjugate and μ by a Pμ-conjugate, we may
assume that λ and μ commute. As in (i), Pλ ∩ Pμ is stable under cλ and cμ and
cλ(cμ(H)) = cμ(cλ(H)) is Ru(Pμ)-conjugate to cλ(H) and is G-cr, since cλ(H) is
G-cr. �

Definition 5.15. Let M be a subgroup of G. Given n ∈ N, set Sn(M) := G ·Mn,
a closed G-stable subset of Gn. Note that Sn(M) only depends on the G-conjugacy
class of M . Now suppose there exists λ ∈ Yk(G) such that H ⊆ Pλ and M = cλ(H).
Note that if k is algebraically closed, then some subgroup of G in the G-conjugacy
class attached to H of G-cr subgroups of G, provided by Proposition 5.14, satisfies
this hypothesis. Then we have cλ(H

n) ⊆ Mn ⊆ Sn(M), so Hn is uniformly Sn(M)-
unstable over k (in the sense of Definition 4.2).

Theorem 5.16. Let G, G′ and ‖ ‖ be as above. Let H be any subgroup of G and
let n ∈ N such that Hn contains a generic tuple of H. Let M be a subgroup of G
and suppose that M = cλ(H) for some λ ∈ Yk(G) with H ⊆ Pλ. Put Ω(H,M, k) :=
Ω(Hn, Sn(M), k). Then the following hold:

(i) Pμ = Pν for all μ, ν ∈ Ω(H,M, k). Let P (H,M, k) denote the unique R-
parabolic subgroup of G so defined. Then we have H ⊆ P (H,M, k) and
Ru(P (H,M, k))(k) acts simply transitively on Ω(H,M, k).

(ii) For g ∈ G′(k) we have that Ω(gHg−1, gMg−1, k) = g · Ω(H,M, k) and
P (gHg−1, gMg−1, k) = gP (H,M, k)g−1. If g ∈ G(k) normalizes H, then
g ∈ P (H,M, k).

(iii) If μ ∈ Ω(H,M, k), then dimCG(cμ(H)) ≥ dimCG(M). If M is G-conjugate
to H, then Ω(H,M, k) = {0} and P (H,M, k) = G. If M is not G-conjugate
to H, then H is not contained in any R-Levi subgroup of P (H,M, k).

Proof. (i) and (ii). Clearly, Hn is uniformly Sn(M)-unstable over k, so Ω(H,M, k)
is well defined. If μ ∈ Ω(H,M, k), then lima→0 μ(a) · h exists for all h ∈ Hn, so
H ⊆ Pμ = P (H,M, k). The rest follows immediately from Theorem 4.5.

(iii). We have dimCG(m) ≥ dimCG(M) for all m ∈ G · Mn. Since m �→
dimCG(m) is upper semi-continuous, cf. [25, Lem. 3.7(c)], this inequality holds for
all m ∈ Sn(M).
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Let μ ∈ Ω(H,M, k). Let h ∈ Hn be a generic tuple of H. Then cμ(h) is a
generic tuple of cμ(H), by Lemma 5.5(iii). So dimCG(cμ(H)) = dimCG(cμ(h)) ≥
dimCG(M), since cμ(h) ∈ Sn(M).

It follows easily from the definitions that P (H,M, k) = G if and only if Ω(H,M, k)
= {0} if and only if Hn ⊆ Sn(M). Clearly, the latter is the case if M is G-
conjugate to H. Now assume that M is not G-conjugate to H and pick μ ∈
Ω(H,M, k). Then dimCG(M) > dimCG(H), by Theorem 5.8(ii) (applied to λ).
So dimCG(cμ(H)) > dimCG(H) by the above, and H is not contained in any
R-Levi subgroup of P (H,M, k), by Theorem 5.8(ii) (applied to μ). �

Definition 5.17. We call Ω(H,M, k) the optimal class for H with respect to M
over k and we call P (H,M, k) the optimal destabilizing R-parabolic subgroup for
H with respect to M over k. Assume the G-conjugacy class given by Proposi-
tion 5.14 contains a group M of the form cλ(H) for some λ ∈ Yk(G). Then we
set Ω(H, k) := Ω(H,M, k) and P (H, k) := P (H,M, k). Under this assumption we
have, by Proposition 5.14 and Theorem 5.16, that NG(k)(H) is contained in P (H, k)
and that for μ ∈ Ω(H, k), cμ(H) is G-completely reducible. So, by Theorem 5.8(ii),
if H is not G-completely reducible, then it is not contained in any R-Levi subgroup
of P (H, k). Note that, trivially, P (H, k) = G if H is G-completely reducible. We
call Ω(H, k) the optimal class for H over k and we call P (H, k) the optimal desta-
bilizing R-parabolic subgroup for H over k. We suppress the dependence on the
choice of n and ‖ ‖ in the notation (cf. Remark 5.22).

Note that the assumption of the previous paragraph is satisfied if k is alge-
braically closed. In that case we usually suppress the k argument and write simply
Ω(H) and P (H) instead; we refer to these as the optimal class for H and the
optimal destabilizing R-parabolic subgroup for H, respectively.

We now suppose that the fixed norm ‖ ‖ on Y (G) is k-defined; cf. Definition 4.1.
We get the following rationality result.

Theorem 5.18. Let G, G′, H and n be as in Theorem 5.16 and assume that H is
k-closed. Then the following hold:

(i) Suppose that M is a subgroup of G such that M = cλ(H) for some λ ∈ Yks
(G)

with H ⊆ Pλ and such that Sn(M) is k-defined (this is the case in particular if
M is k-defined). Then Ω(H,M, k) is well defined and equal to Ω(H,M, ks) ∩
Yk(G). Moreover, P (H,M, k) is well defined and equal to P (H,M, ks). In
particular, P (H,M, ks) is k-defined.

(ii) If k is perfect, then Ω(H, k) is well defined and equal to Ω(H)∩Yk(G). More-
over, P (H, k) is well defined and equal to P (H). In particular, P (H) is
k-defined.

Proof. (i). This follows immediately from Theorem 4.7.
(ii). Since k is perfect, ks = k. Let M be as in Proposition 5.14; then H is

uniformly Sn(M)-unstable over k. Now Sn(M) is Γ-stable by Proposition 5.14(iii)
and hence is k-defined, since k is perfect. The result now follows from (i). �

Remarks 5.19. (i). Let M be as in Theorem 5.16 and let M0 be a G-cr subgroup
from the G-conjugacy class associated to H by Proposition 5.14. Then we have
Sn(M0) ⊆ Sn(M) for any n. To prove this we may, by the final assertion in
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Proposition 5.14, assume that M = H. Furthermore, we may assume that M0 =
cλ(H) for some λ ∈ Y (G) with H ⊆ Pλ. Since λ(a) ·Hn ⊆ G ·Hn for all a ∈ k∗,
we have Mn

0 = cλ(H
n) ⊆ Sn(H). So Sn(M0) ⊆ Sn(H).

(ii). Note that G·Mn need not be closed: e.g., take G connected and non-abelian,
n to be 1 and H = M to be a maximal torus of G.

Example 5.20. We give an example of the usefulness of this construction (cf. [21]
and [1, Thm. 3.10]). Let H be a G-completely reducible subgroup of G and let N
be a normal subgroup of H. We prove that N is G-completely reducible. Suppose
not. Then H ⊆ NG(N) ⊆ P (N). Since N is not contained in an R-Levi subgroup
of P (N), neither is H. But H is assumed to be G-completely reducible, so this is
impossible. We deduce that N is G-completely reducible after all.

Here is a second example, which illustrates the gap in the theory pointed out in
the Introduction.

Example 5.21. Assume k is perfect and H is a k-defined subgroup of G. Suppose
H is not G-completely reducible. Then H is not contained in any R-Levi subgroup
of the optimal destabilizing R-parabolic subgroup P (H) of G. Now P (H) = Pλ for
some λ ∈ Yk(G), by Theorem 5.18(ii), so H is not G-completely reducible over k.
This proves the forward direction of [1, Thm. 5.8]. The proof of the reverse direction
given in loc. cit. is essentially just a special case of the proof of Theorem 3.1.

One deduces from the above as in [1, Thm. 5.8] that if k1/k is a separable alge-
braic extension of fields and G and H are k-defined, then, under the hypothesis that
k is perfect, H is G-completely reducible over k1 if and only if H is G-completely
reducible over k. We answered the forward direction of Serre’s question, Theorem
5.11, without the hypothesis that k is perfect. We cannot answer the reverse direc-
tion by passing to k using the argument in the previous paragraph: for H can be
G-completely reducible over k (or k1) and yet not G-completely reducible over k,
or vice versa (see Remark 5.10). To give a direct proof that the reverse implication
holds, one would like to associate an “optimal destabilizing R-parabolic subgroup”
P to H having the property that P is defined over k1 and no R-Levi k1-subgroup
of P contains H; optimality should imply that P is Gal(k1/k)-stable and hence k-
defined, which would show that H is not G-completely reducible over k. We cannot
take P to be P (H, cμ(H), k1) for any μ ∈ Yk1

(H), because if H is G-completely
reducible, then P (H, cμ(H), k1) is just G.

Remark 5.22. The construction of the optimal class of k-defined cocharacters and
the optimal destabilizing R-parabolic subgroup P (H) from Definition 5.17 depends
on the choice of n and the choice of norm ‖ ‖. In view of [12, Sec. 7], it is plausible
that this construction is independent of these choices. Since the results we obtain
here are sufficient for our applications in the present and subsequent sections, we
do not pursue this question here and leave it instead to a future study.

5.3. Counterparts for Lie subalgebras. There are counterparts to our results
for Lie subalgebras h of the Lie algebra g = LieG of G. All of our results carry
over with obvious modifications. For instance, if h is not G-completely reducible,
then there is an optimal destabilizing parabolic subgroup P of G such that h ⊆ p

but h �⊆ l for any R-Levi subgroup L of P ; see Theorem 5.27 below. Many of the
proofs are actually easier in the Lie algebra case: for example, it often suffices to
work in connected G. We just state the counterparts of Theorems 5.8 and 5.16 in
this Lie algebra setting. We leave the details of the proofs to the reader.
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For a subgroup H of G we denote its Lie algebra LieH by h. We start with the
analogue of Definition 5.1 in this setting; cf. [22] and also [5, Sec. 3.3].

Definition 5.23. A subalgebra h of g is G-completely reducible if for any R-
parabolic subgroup P of G such that h ⊆ p, there is an R-Levi subgroup L of
P such that h ⊆ l.

We require some standard facts concerning Lie algebras of R-parabolic and R-
Levi subgroups of G (cf. [27, Sec. 2.1]).

Lemma 5.24. For λ ∈ Y (G), put pλ = Lie(Pλ) and lλ = Lie(Lλ). Let x ∈ g.
Then

(i) x ∈ pλ if and only if lim
a→0

λ(a) · x exists;

(ii) x ∈ lλ if and only if lim
a→0

λ(a) · x exists and equals x if and only if λ(k)

centralizes x;
(iii) x ∈ Lie(Ru(Pλ)) if and only if lim

a→0
λ(a) · x exists and equals 0.

The map cλ : pλ → lλ given by x �→ lim
a→0

λ(a) · x coincides with the usual

projection of pλ onto lλ. In analogy with the construction for subgroups of G, we
consider the action of G on gn by simultaneous adjoint action.

Remark 5.25. A statement analogous to Proposition 5.14 holds for Lie algebras:
that is, given any Lie subalgebra h of g, we can find a uniquely defined G-conjugacy
class of subalgebras of g which contains cλ(h) for some λ ∈ Y (G), each member of
which is G-cr.

Theorem 5.26.

(i) Let n ∈ N, let h ∈ gn and let λ ∈ Y (G) such that m := lima→0 λ(a) ·h exists.
Then the following are equivalent:
(a) m is G-conjugate to h;
(b) m is Ru(Pλ)-conjugate to h;
(c) dimG ·m = dimG · h.

(ii) Let h be a subalgebra of g and let λ ∈ Y (G). Suppose h ⊆ pλ and set m = cλ(h).
Then dimCG(m) ≥ dimCG(h) and the following are equivalent:
(a) m is G-conjugate to h;
(b) m is Ru(Pλ)-conjugate to h;
(c) h is contained in the Lie algebra of an R-Levi subgroup of Pλ;
(d) dimCG(m) = dimCG(h).

(iii) Let h, λ and m be as in (ii) and let h ∈ hn be a generating tuple of h. Then the
assertions in (i) are equivalent to those in (ii). In particular, h is G-completely
reducible if and only if G · h is closed in gn.

Note that the final statement of Theorem 5.26(iii) is [22, Thm. 1(1)].
If h is a Lie subalgebra of g and h ⊆ pλ for λ ∈ Y (G), then setting m := cλ(h)

and Sn(m) := G ·mn, we get an optimal class Ω(hn, Sn(m)) of cocharacters, as in
Definition 5.15.

Theorem 5.27. Let G, G′ and ‖ ‖ be as in Theorem 5.16. Let h be any subalgebra
of g and let n ∈ N such that hn contains a generating tuple of h. Let m be a
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subalgebra of g and suppose that m = cλ(h) for some λ ∈ Yk(G) with h ⊆ pλ. Put
Ω(h,m, k) := Ω(hn, Sn(m), k). Then the following hold:

(i) Pμ = Pν for all μ, ν ∈ Ω(h,m, k). Let P (h,m, k) denote the unique R-parabolic
subgroup of G so defined. Then h ⊆ Lie(P (h,m, k)) and Ru(P (h,m, k))(k) acts
simply transitively on Ω(h,m, k).

(ii) For g ∈ G′(k) we have Ω(g · h, g ·m, k) = g · Ω(h,m, k) and P (g · h, g ·m, k) =
gP (h,m, k)g−1. If g ∈ G(k) normalizes h and stabilizes Sn(m), then g ∈
P (h,m, k).

(iii) If μ ∈ Ω(h,m, k), then dimCG(cμ(h)) ≥ dimCG(m). If m is G-conjugate to h,
then Ω(h,m, k) = {0} and P (h,m, k) = G. If m is not G-conjugate to h, then
h is not contained in the Lie algebra of any R-Levi subgroup of P (h,m, k).

Definition 5.28. We call Ω(h,m, k) the optimal class for h with respect to m over
k and we call P (h,m, k) the optimal destabilizing R-parabolic subgroup for h with
respect to m over k. Assume the G-conjugacy class given by Remark 5.25 contains
a subalgebra m of the form cλ(h) for some λ ∈ Yk(G). Then we set Ω(h, k) :=
Ω(h,m, k) and P (h, k) := P (h,m, k). Under this assumption we have, by Remark
5.25 and Theorem 5.27, that NG(k)(h) is contained in P (h, k) and that for μ ∈
Ω(h, k), cμ(h) is G-completely reducible. So, by Theorem 5.26(ii), if h is not G-
completely reducible, then h is not contained in the Lie algebra of any R-Levi
subgroup of P (h, k). Note that, trivially, P (h, k) = G if h is G-completely reducible.
We call Ω(h, k) the optimal class for h over k and we call P (h, k) the optimal
destabilizing R-parabolic subgroup for h over k.

Note that the assumption of the previous paragraph is satisfied if k is alge-
braically closed. In that case we usually suppress the k argument and write simply
Ω(h) and P (h) instead; we refer to these as the optimal class for h and the optimal
destabilizing R-parabolic subgroup for h, respectively.

Example 5.29. As a further illustration of the power of our construction, we use
Theorem 5.27 to give a short alternative proof of [22, Thm. 1(2)], which states that
h = LieH is G-completely reducible if H is G-completely reducible.

Let H be a subgroup of G. Assume that h is not G-cr. Let P (h) be the optimal
destabilizing R-parabolic subgroup for h. By Theorem 5.27(ii), NG(h) ⊆ P (h).
Clearly, H ⊆ NG(h). Moreover, if μ ∈ Ω(h) and H ⊆ Lμ, then h ⊆ lμ. This is
impossible by Theorem 5.27(iii), so H is not G-cr. Thus we can conclude that if H
is G-cr, then so is h.

5.4. A special case of the Centre Conjecture. In this final section we describe
an application of optimal destabilizing parabolic subgroups to the theory of spher-
ical buildings [36]. Suppose from now on that G is connected. Let X = X(G, k)
be the spherical Tits building of G over k; then X is a simplicial complex whose
simplices correspond to the k-defined parabolic subgroups of G. The conjugation
action of G(k) on itself naturally induces an action of G(k) on X. We identify X
with its geometric realization. A subcomplex Y of X is convex if whenever two
points of Y are not opposite in X, then Y contains the unique geodesic joining
these points, and Y is contractible if it has the homotopy type of a point. The
following is a version due to Serre of the so-called Centre Conjecture of J. Tits [34,
Sec. 2.4]. This has been proved by B. Mühlherr and J. Tits for spherical buildings
of classical type [23].
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Conjecture 5.30. Let Y be a convex and contractible subcomplex of X. Then
there is a point y ∈ Y such that y is fixed by any automorphism of X that stabilizes
Y .

A point y ∈ Y whose existence is asserted in Conjecture 5.30 is frequently referred
to as a “natural centre” or just “centre” of Y . Our idea is to take as a centre of Y
the barycentre of the simplex corresponding to the optimal destabilizing parabolic
subgroup in an appropriate sense. This approach is not new; indeed, it was part
of the motivation for Kempf’s paper [15] on optimality (cf. [24, p. 64]). We show
how to make this work to prove the Centre Conjecture in the case that Y is the
fixed point subcomplex XH for some subgroup H of G, where XH consists of all the
simplices in X corresponding to parabolic subgroups containing H. Note that XH

is always a convex subcomplex of X [32, §2.3.1].

Theorem 5.31. Suppose G is semisimple and adjoint and k is a perfect field. Let
H be a subgroup of G and suppose that Y := XH is contractible. Then there is a
point y ∈ Y which is fixed by any element of (AutG)(k) that stabilizes Y .

Proof. Since we are assuming that G is semisimple and defined over k, AutG is an
algebraic group also defined over k [36, 5.7.2]. Since G is adjoint, we can also view
G as a subgroup of AutG. Let K be the intersection of all the k-defined parabolic
subgroups of G that contain H. Then K is k-defined, because k is perfect, and
XK = Y ; cf. the proof of [3, Thm. 3.1]. Since Y is contractible, K is not G-cr over
k, by a result of Serre [34, Sec. 3], and hence K is not G-cr, by [1, Thm. 5.8].

Now let M be a representative of the unique G-conjugacy class of G-cr sub-
groups attached to K given by Proposition 5.14. Let P = P (K) be the optimal
destabilizing parabolic subgroup for K (over k), Definition 5.17. Then P is a par-
abolic subgroup of G containing K, by Theorem 5.16(i), and P is defined over
k, by Theorem 5.18(ii), so P corresponds to a simplex of Y . Moreover, any ele-
ment of (AutG)(k) that stabilizes Y also normalizes K, and hence stabilizes the
G-conjugacy class of M , by Proposition 5.14(ii). So any such automorphism nor-
malizes P , by Theorem 5.16(ii), with G′ = AutG. We can therefore take y to be
the barycentre of the simplex corresponding to P . �

Remark 5.32. The assumptions that G is semisimple and adjoint in Theorem 5.31
allow us to apply our optimality results, because they ensure that AutG is an
algebraic group and G is a subgroup of AutG. In the context of buildings, however,
these assumptions are no loss: given any connected reductive G, let Ad denote the
adjoint representation of G. Then the building of G is isomorphic to the building
of the adjoint group Ad(G), and a subgroup H of G is G-cr if and only if the image
of H in Ad(G) is Ad(G)-cr [1, Lem. 2.12]. Moreover, all automorphisms of X(G)
that come from AutG survive this transition from G to Ad(G).

To establish that the Centre Conjecture holds for subcomplexes of the form Y =
XH , we need to find a centre y ∈ Y which is fixed by all building automorphisms of
X that stabilize XH , not just the building automorphisms that arise from algebraic
automorphisms of G. For most G, however, AutX is generated by AutG together
with field automorphisms; see [36, Cor. 5.9] for more details. We finish by showing
how to deal with field automorphisms in some cases.

Recall that Γ denotes the group Gal(ks/k). Following [36, 5.7.1], any γ ∈ Γ
induces an automorphism of the building X = X(G, k), which we also denote by
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γ. Recall that Γ also acts on the set of cocharacters Y (G) and we can ensure that
the norm is invariant under this action (i.e., the norm is k-defined in the sense of
Section 4).

Theorem 5.33. Suppose G is connected. Let X = X(G, k) be the building of G
over the algebraic closure of k. Let H be a subgroup of G and suppose that Y := XH

is contractible. Let ΓY denote the subgroup of Γ that stabilizes Y . Then there is a
point y ∈ Y which is fixed by any element of ΓY .

Proof. As in the proof of Theorem 5.31, let K be the intersection of the parabolic
subgroups corresponding to simplices in Y . Then Y = XK , and since Y is stabilized
by all γ ∈ ΓY , we have γ · K = K for all γ ∈ ΓY . Let λ and M = cλ(K) be as
in Proposition 5.14. Choose n ∈ N such that K admits a generic n-tuple k ∈ Kn.
Then Sn(M) is ΓY -stable by Proposition 5.14(iii). Because the norm is Γ-invariant,
for any λ ∈ Λ(Kn) and any γ ∈ ΓY , we have

αSn(M),Kn(γ · λ)
‖γ · λ‖ =

αSn(M),Kn(λ)

‖λ‖ .

It follows that the optimal parabolic subgroup P (K) for K is stabilized by ΓY . We
can therefore take y to be the barycentre of the simplex corresponding to P (K). �

Remarks 5.34. (i). Combining Theorem 5.31 and Theorem 5.33 goes a long way
towards proving the full version of Tits’ Centre Conjecture for subcomplexes of the
form XH in many cases. For example, if G is a split simple group of adjoint type
defined over a finite field k, then, with a few exceptions, the automorphism group
of X(G, k) is a split extension of AutG by the automorphism group of the field k
(see [36, Cor. 5.10]), and the results above show how to deal with many of these
automorphisms.

(ii). Theorems 5.31 and 5.33 improve on [3, Thm. 3.1].
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[6] A. Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic
Groups and Related Finite Groups, pp. 1-55, Lecture Notes in Mathematics, Vol. 131,
Springer, Berlin, 1970. MR0258838 (41:3484)

[7] , Linear algebraic groups, Graduate Texts in Mathematics, 126, Springer-Verlag, 1991.
MR1102012 (92d:20001)
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