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Abstract Let H be an algebraic group scheme over a field k acting on a commutative
k-algebra A which is a unique factorisation domain. We show that, under certain mild assump-
tions, the monoid of nonzero H -stable principal ideals in A is free commutative. From this
we deduce, in certain special cases, results about the monoid of nonzero semi-invariants and
the algebra of invariants. We use an infinitesimal method which allows us to work over an
arbitrary base field.

Mathematics Subject Classification (2000) 13F15 · 14L15 · 14L30

1 Introduction and notation

Let H be a linear algebraic group acting on an irreducible variety X . It is of interest to know
conditions for when a function f on X is an H -(semi-)invariant. For example, when X is
normal, H is connected and the principal divisor ( f ) is fixed by a closed subgroup H ′ of
H , then f is an H ′-semi-invariant. Without the action of the bigger connected group H
this is no longer true. Another well-known fact is that when H is connected, X is affine
and k[X ] is a unique factorisation domain (UFD) of which the invertible elements are the
nonzero constants, then the prime factors of an H -semi-invariant are H -semi-invariants. For
non-connected groups and/or invariants the situation is much more complicated. A standard
example where the ring of invariants in a UFD is not a UFD is k[PGLn] = k[GLn]Z , where
Z consists of the nonzero multiples of the identity acting via the right regular representation,
see [1, Ch. 3] for the case of invariants for finite groups.

The quotient space X/H (when it exists) is often also involved here. By [4, III Sect. 3 no.
2,5] every homogeneous space for a linear algebraic group G is of the form G/H , where H is
a closed subgroup scheme of G (so k[H ] need not be reduced) see [2, V.17] for a special case.
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158 R. Tange

So even if one is only interested in homogeneous spaces (over fields of positive characteristic)
one is led to consider group scheme actions.

In this paper we study the behaviour of factorisation with respect to the action of a group
scheme H . Our initial interest was in (semi-)invariants, but it turns out, for reasons partly
indicated above, that we first have to look at the property “Aa is H -stable” of an element
a ∈ A. After that we indicate ways to go from “Aa is H -stable” to “a is an H -semi-invariant”
(see Remark 2.1 and Proposition 2). The main results are Theorems 1 and 2. They state
roughly that when a group scheme H acts on a UFD A, then the monoid of nonzero elements
a ∈ A such that Aa is H -stable has the unique factorisation property.

Throughout this paper k denotes a field. All group schemes are affine and H will always de-
note an algebraic group scheme over k. For the basic definitions concerning (group) schemes
we refer to [7]. By “algebraic group” we will always mean a reduced linear algebraic group
over an algebraically closed field. By “reductive group” we will always mean an algebraic
group with trivial unipotent radical. An element of a module for a group scheme is called a
semi-invariant if it spans a submodule.

2 Group scheme actions on UFD’s

We start with a basic result about distributions. We need a simple lemma which is easily
proved using the modular property for subspaces of a vector space and induction on r .

Lemma 1 Let V0 ⊇ V1 ⊇ V2 ⊇ · · · ⊇ Vr and W0 ⊇ W1 ⊇ W2 ⊇ · · · ⊇ Wr be two
descending chains of subspaces of a vector space V . Then

r⋂

i=0

(Vi + Wr−i ) = Vr + Wr +
r−1∑

i=0

Vi ∩ Wr−1−i .

Now let X, X ′ be affine algebraic k-schemes and let x ∈ X (k) and x ′ ∈ X ′(k). As in [7]
we denote the space of distributions of X with support in x by Dist(X, x) ⊆ k[X ]∗. It con-
sists of the functionals that vanish on some power of the vanishing ideal Ix of x . This space
has a natural filtration (Distn(X, x))n≥0, where Distn(X, x) consists of the functionals that
vanish on the (n + 1)-st power of the vanishing ideal Ix of x . If we apply Lemma 1 with
r = n, Vi = I i+1

x ⊗ k[X ′] and Wi = k[X ] ⊗ I i+1
x ′ , then we obtain, as in [7, I.7.4],

n⋂

i=0

(I i+1
x ⊗ k[X ′] + k[X ] ⊗ I n+1−i

x ′ ) = I n+1
x ⊗ k[X ′] + k[X ] ⊗ I n+1

x ′ +
n∑

i=1

I i
x ⊗ I n+1−i

x ′

(1)

which is clearly equal to
∑n+1

i=0 I i
x ⊗ I n+1−i

x ′ . From this it is deduced in [7, I.7.4] that there
is an isomorphism Dist(X, x) ⊗ Dist(X ′, x ′) ∼= Dist(X × X ′, (x, x ′)) which maps each∑n

i=0 Disti (X, x) ⊗ Distn−i (X, x) onto Distn(X × X ′, (x, x ′)). Taking X = X ′ and x = x ′
we see that Dist(X, x) is a coalgebra. Its comultiplication � is the “differential” of the
diagonal embedding at (x, x). The counit is the evaluation at the constant function 1 ∈ k[G].

If we apply Lemma 1 with r = n − 2, Vi = I i+2
x ⊗ k[X ′] and Wi = k[X ] ⊗ I i+2

x ′ , then
we obtain

n−1⋂

i=1

(I i+1
x ⊗ k[X ′] + k[X ] ⊗ I n+1−i

x ′ ) = I n
x ⊗ k[X ′] + k[X ] ⊗ I n

x ′ +
n−1∑

i=2

I i
x ⊗ I n+1−i

x ′ .

(2)

123



Factorisation properties of group scheme actions 159

Lemma 2 Let X be an algebraic affine k-scheme, let x ∈ X (k), let n > 0 and denote the
evaluation at x by εx . Then we have for all u ∈ Distn(X, x) that

�(u) − u ⊗ εx − εx ⊗ u ∈
n−1∑

i=1

Disti (X, x) ⊗ Distn−i (X, x).

Proof By (2)
∑n−1

i=1 Disti (X, x) ⊗ Distn−i (X, x) is everything that vanishes on

I n
x ⊗ k[X ] + k[X ] ⊗ I n

x +
n−1∑

i=2

I i
x ⊗ I n+1−i

x .

From (1) and the fact that � is filtration preserving we get �(u) vanishes on
∑n−1

i=2 I i
x ⊗

I n+1−i
x and, clearly, the same holds for u ⊗ εx and εx ⊗ u, so we only have to check that

�(u) − u ⊗ εx − εx ⊗ u vanishes on I n
x ⊗ k[X ] and k[X ] ⊗ I n

x . This follows immediately
from u(I n+1

x ) = 0,�(u)( f ⊗ g) = u( f g) and g = g − g(x) + g(x) for f, g ∈ k[X ]. ��
A simple induction gives us the following generalisation.

Corollary Let X, x, n, εx be as in Lemma 2, let m ≥ 2 and let �m : k[X ] → k[X ]⊗m be
the m-th comultiplication. Then we have for all u ∈ Distn(X, x) that

�m(u) − u ⊗ εx ⊗ · · · ⊗ εx − · · · − εx ⊗ · · · ⊗ εx ⊗ u

∈
∑

i1,...,im

Disti1(X, x) ⊗ · · · ⊗ Distim (X, x),

where the sum is over all i1, . . . , im in {0, . . . , n − 1} with
∑m

j=1 i j = n.

We will apply the above lemma and its corollary to the case that X = H , where H
is an (affine) algebraic group scheme and x is the identity e ∈ H . Then we write Dist
(H, e) = Dist(H). Since H is a group scheme, Dist(H) is not just a coalgebra, but a Hopf
algebra. Its unit element it the evaluation ε at e. We note that Dist(H) = Dist(H0), where
H0 is the identity component of H . So we can speak about Dist(H)-modules (because of the
algebra structure) and about the tensor product of Dist(H)-modules. Recall that H is called
finite when dim k[H ]< ∞ and infinitesimal when k[H ] is finite dimensional and has a unique
maximal ideal. Every H -module is a Dist(H)-module and if H is infinitesimal, then this gives
an equivalence of categories. In general a (left) H -module ([7, I.2.7]) is the same thing as a
right k[H ]-comodule (for k[H ] as a coalgebra). If k is perfect of characteristic p > 0, r ≥ 0
and H is an algebraic group scheme and over k, then the r -th Frobenius kernel Hr of H (see
[7, I.9]) is an infinitesimal group scheme and we have Dist(H) = ⋃

r≥0 Dist(Hr ).
Let A be a k-algebra. We say that A is a Dist(H)-algebra, if it is a Dist(H)-module such

that the multiplication A ⊗ A → A is a morphism of Dist(H)-modules. We say that A is
an H-algebra or that H acts on A, if A is an H -module such that, for each commutative
k-algebra R, H(R) acts by automorphisms of the algebra R ⊗ A. This condition is equivalent
to the condition that the comodule map �A : A → A⊗k[H ] is a homomorphism of algebras.
Every H -algebra is a Dist(H)-algebra and when H is infinitesimal, the two notions coincide.

Let A be a commutative Dist(H)-algebra. Assume first that k is perfect with char k = p > 0
and that H is infinitesimal of height ≤ r (i.e. H = Hr ). Then we have for f ∈ k[H ]
that f pr = ( f − f (e))pr + f (e)pr = f (e)pr

. Furthermore, if �A(a)= ∑
i ai ⊗ fi , then

a = ∑
i fi (e)ai . Finally, A is an H -algebra, since H is infinitesimal. So the comodule map

is a homomorphism of algebras. From these facts we easily deduce that H fixes the elements
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160 R. Tange

of Apr
. Now assume only that char k = p > 0. Then we deduce from the above, by base

extension to a perfect field, that u ∈ Dist(H) acts Apr
-linearly on A whenever it kills the

pr th powers of the elements of Ie.
Now drop the assumption on k and assume that A is a domain. Then the Dist(H)-action

extends to give Frac(A) the structure of a Dist(H)-algebra (clearly such an extension is
unique). To see this in case char k = 0 one can use Cartier’s Theorem ([4, II.6.1.1]) which
says that Dist(H) = U (Lie(H)). Then the action of Dist(H) is given by the standard exten-
sion of derivations to the field of fractions. In case char k = p > 0 we use that, by the above,
for n ≤ pr − 1, the elements of Distn(H) act Apr

-linearly on A. So one can extend their
action to Frac(A)= A[(Apr \ {0})−1] in the obvious way. This clearly leads to the required
action of Dist(H). If A is an H -algebra, then there is, of course, also an action of H(k)

on Frac(A). It is important to note that the actions of Dist(H) and H(k) on Frac(A) are in
general not locally finite.

If A is a Dist(H)-algebra and a ∈ A, then Aa is Dist(H)-stable if and only if u ·a ∈ Aa for
all u ∈ Dist(H). If, in addition, A is a commutative domain, then we also have for a ∈ Frac(A)

that Aa is Dist(H)-stable if and only if u · a ∈ Aa for all u ∈ Dist(H). We note that if a
group G acts on a commutative domain A by automorphisms, then Aa is G-stable if and
only if, for all g ∈ G, a and g(a) differ by a unit.

The first assertion of the lemma below is [7, I.7.17(6), 8.6]. To prove the second assertion
one may assume that k1 = k. Then one takes a k-point from each irreducible component of
Hk and the result follows from [7, I.7.17(6), 8.6] and some elementary properties of the
comodule map. We leave the details to the reader.

Lemma 3 Let H be an algebraic group scheme over k and let M be an H-module. Assume
that k is perfect or that H is finite and let N be a subspace of M. Denote the identity
component of H by H0.

(i) N is an H0-submodule if and only if N is Dist(H)-stable.
(ii) If k1 is an extension field of k such that every irreducible component of Hk1 contains

a k1-point, then N is an H-submodule if and only if N is Dist(H)-stable and k1 ⊗ N
is H(k1)-stable.

Proposition 1 Let H be an algebraic group scheme over k and let A be a Dist(H)-algebra
which is a commutative domain. Let a, b, c ∈ A and m ≥ 0.

(i) Assume that A is a UFD and that b and c are coprime. If Abc is Dist(H)-stable, then
so are Ab and Ac.

(ii) Assume that A is a UFD and that b and c are coprime. If A(b/c) is Dist(H)-stable,
then so are Ab and Ac.

(iii) If Aam is a Dist(H)-stable and m �= 0 in k, then Aa is Dist(H)-stable.

Proof (i). We show by induction on n that Ab is Distn(H)-stable. For n = 0 there is nothing to
prove. So assume that n > 0. Let u ∈ Distn(H). By Lemma 2 we can write �(u)−u ⊗ε−ε⊗
u = ∑n−1

i=1 u1
i ⊗ u2

n−i , where ε is the evaluation at the unit element of H and u j
i ∈ Disti (H).

Since A is a Dist(H)-algebra we have u · (bc)− (u · b)c − b(u · c) = ∑n−1
i=1 (u1

i · b)(u2
n−i · c).

So by our assumption and the induction hypothesis we get that b divides (u · b)c. Since b
and c are coprime, this means that b divides (u · b).
(ii). Let u ∈ Distn(H). Since b = b

c c, we have by Lemma 2

u · b −
(

u · b

c

)
c − b

c
(u · c) =

n−1∑

i=1

(
u1

i · b

c

) (
u2

n−i · c
)
.

123



Factorisation properties of group scheme actions 161

So we have in A that

(u · b) c −
(

u · b

c

)
c2 − b(u · c) =

n−1∑

i=1

(
u1

i · b

c

)
c

(
u2

n−i · c
)
.

Now, by assumption, (u · b
c ) c ∈ Ab and (u1

i · b
c ) c ∈ Ab, so b divides (u · b) c. And therefore

b divides u · b. Furthermore we obtain, using induction as in (i), that c divides b(u · c) and
therefore that c divides u · c.

(iii) Let u ∈ Distn(H). By the corollary to Lemma 2 we can write

�m(u) = u ⊗ ε ⊗ · · · ⊗ ε + · · · + ε ⊗ · · · ⊗ ε ⊗ u +
∑

j

u1
j ⊗ · · · ⊗ um

j ,

where ui
j ∈ Distni j (H) for ni j ∈ {0, . . . , n − 1} with

∑m
i=1 ni j = n for all j . Then

u · (am) = mam−1u · a +
∑

j

u1
j · a · · · um

j · a.

So, by induction on n, we get that a divides u · a for all u ∈ Distn(H). ��
Corollary Assume that A is an H-algebra and that k is perfect or H is finite.

(i) If H is irreducible, then, in the conclusions in Proposition 1, “Dist(H)-stable” may
be replaced by “H-stable”.

(ii) Assume that A is normal and that every irreducible component of H contains a k-point.
Then Proposition 1(iii) is also valid with “Dist(H)-stable” replaced by “H-stable”.
Furthermore, if in (ii) we require A(b/c) also to be H(k)-stable, then Ab and Ac are
H-stable.

Proof (i). This follows immediately from [7, I.7.17(6), 8.6].
(ii). Let h ∈ H(k). First consider Proposition 1(ii). Then, by assumption, (h · b)c ∈ Ab(h · c)
and (h−1 ·b)c ∈ Ab(h−1 ·c). So b divides h ·b and c divides h ·c. Now the result follows from
Lemma 3. Now consider Proposition 1(iii). Let h ∈ H(k). By assumption we have am |(h ·a)m .
Then (h · a)/a ∈ Frac(A) is integral over A. So a|h · a, since A is normal. Now the result
follows again from Lemma 3. ��
Remark 1 The arguments in the proof of Proposition 1(iii) also yield the statement with
the property “Aa is Dist(H)-stable” replaced by “a is Dist(H)-semi-invariant” or by “a is
Dist(H)-invariant”.

The theorem below is a generalisation of a well-known result for connected algebraic
groups over an algebraically closed field (see e.g. [6, Lemma 20.1]). We remind the reader
that the unique factorisation property makes sense for any commutative monoid in which the
cancellation law holds. In fact such a monoid has the unique factorisation property if and
only if the quotient by the units is a free commutative monoid.

Theorem 1 Let H be an irreducible algebraic group scheme over k and let A be a Dist(H)-
algebra. Assume that A is a UFD. Then the monoid of nonzero elements a ∈ A such that Aa
is Dist(H)-stable has the unique factorisation property. If char k = 0, then its irreducible ele-
ments are the irreducible elements a of A such that Aa is Lie(H)-stable. If char k = p > 0,
then its irreducible elements are the elements a ps

, where a is irreducible in A, s ≥ 0, Aa ps

is Dist(H)-stable, and s is minimal with this property.
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162 R. Tange

Proof The case that char k = 0 follows easily from Cartier’s Theorem and Proposition 1, so
we assume that char k = p > 0. Then we note that the statement of the theorem is equivalent
to the following statement. If a is an irreducible factor which occurs to the power t in the
prime factorization in A of an element b ∈ A such that Ab is Dist(H)-stable, then Aa ps

is
Dist(H)-stable for some s ≥ 0 and if s is minimal with this property, then ps |t .

So let a, b, t be as stated above. Then, by Proposition 1(i), Aat is Dist(H)-stable. Now
write t = pr t1 with p � t1. Then at = (a pr

)t1 , so Aa pr
is Dist(H)-stable by Proposition 1(iii).

For s as in the theorem we must have s ≤ r and therefore ps |t . ��
To formulate the next theorem correctly we need some notation. Let H be an algebraic

group scheme over k and let A be an H -algebra which is a UFD. Let M be the quotient of
the monoid of nonzero elements in A such that Aa is H0-stable by the units. So M can also
be considered as the monoid of nonzero H0-stable principal ideals in A. Furthermore, we
put � = H(k)/H0(k). Note that � is a finite group and that it acts on M .

Theorem 2 Let H be an algebraic group scheme over k and let A be an H-algebra. Assume
that A is a UFD, that every irreducible component of H contains a k-point and that k is
perfect or H is finite. Let M and � be as above. Then the monoid of nonzero elements a ∈ A
such that Aa is H-stable has the unique factorisation property. Its irreducible elements are
the products of representants of the elements in the �-orbits of the irreducible elements of M.

Proof By Theorem 1 and Lemma 3(i) M is a free commutative monoid. By Lemma 3(ii), an
element Aa of M is H -stable if and only if it is �-fixed. So the quotient of the monoid from
the theorem by the units is M� . But this monoid is free commutative with its irreducible
elements as described in the theorem. ��
Remarks 2 1. If A has a Dist(H)-stable filtration A0 ⊆ A1 ⊆ A2 · · · with A0 = k such that
gr A is a domain, then Aa is Dist(H)-stable if and only if a is a Dist(H)-semi-invariant. This
follows from a simple degree comparison. By Lemma 3 we can draw these conclusions for
an H -action, if we assume that k is perfect or H is finite.
2. Assume that k is perfect with char k = p > 0. Let H be an algebraic group scheme over
k and let A be a reduced commutative H -algebra. Let A(r) and H (r) be the r th Frobenius
twists of A and H , see [7, I.9.2]. Then H (r) acts on A(r) and for the isomorphism a �→ a pr :
A(r) → Apr

we have Frr (h) · a = h · a pr
for all a ∈ A, all h ∈ H(R) and all commutative

k-algebras R. Here Frr : H → H (r) is the r th Frobenius morphism. By [7, I.9.5] we have
k[H/Hr ]= k[H ]Hr = k[H ]pr

. So, if for the nil radical n of k[H ] we have npr = 0, then Frr

induces an isomorphism H/Hr
∼→ H (r)

red , where Hred is the closed subgroup scheme of H

defined by n. So a ∈ A is an Hred-(semi-)invariant if and only if it is an H (r)
red -(semi-)invariant

as an element of A(r) if and only if a pr
is an H -(semi-)invariant. Similarly, we get that Aa

is Hred-stable if and only if Apr
a pr

is H -stable. If A is a normal domain, then this is also
equivalent to Aa pr

is H -stable.
3. Let k and H be as in the previous remark and assume that H is reduced. Let A be
a reduced commutative Dist(H)-algebra. Then, by [7, I.9.5], Frr induces an isomorphism
Hr+s/Hr

∼→ H (r)
s . So, as in the previous remark, we obtain that a ∈ A is an Hs-(semi-)invari-

ant if and only if a pr
is an Hr+s-(semi-) invariant. So the minimal s such that a ps

is an
Hr -(semi-)invariant is r − t where t ∈ {0, . . . , r} is maximal with the property that a is an
Ht -(semi-) invariant. The analogues of the statements from the previous remark about the
property that Aa is H -stable are also valid.
4. Under the assumptions of Theorem 1 we also have that the group of nonzero Dist(H)-sta-
ble principal fractional ideals is free abelian. In the case of Theorem 1 the group of nonzero
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Factorisation properties of group scheme actions 163

principal fractional ideals that are Dist(H)-stable and H(k)-stable is free abelian. The extra
argument one needs is Proposition 1(ii) and assertion (ii) of its corollary.
5. The UFD property is badly behaved with respect to field change, see [3, Chap. 7 Ex. 4 and
6 to Sect. 3].

By Remark 2.1, filtration give us an obvious way to deduce that a is an H -semi-invariant
from the fact that Aa is H -stable. It applies, for example, when A = k[V ], where V is a
finite dimensional H -module. In Proposition 2 below we replace the filtration by the action
of a “big” (AG = k) reductive group G. It applies, for example, to the case A = k[G] and
H ≤ G acting via the right or left regular action. It also applies to the case A = k[G] and
H ≤ G ≤ G × G where G is embedded diagonally and G × G acts in the usual way (so
G × G is now the big reductive group and H acts via the adjoint action). In both cases we
take H ′ = 1.

We emphasize that the property that every a ∈ A such that Aa is H -stable is an
H -semi-invariant is a very general one. For example, when H is a (reduced) closed sub-
group of a connected algebraic group acting on an affine variety X , then the algebra k[X ] has
this property. This follows from the result stated at the beginning of Sect. 1 by passing to the
normalisation of X , since, when X is normal, k[X ] f is H -stable if and only if ( f ) is H -fixed.
So Remark 2.1 and Proposition 2 below are not the definitive results in this direction. The
group of order two acting on the one-dimensional torus by inversion is an example where
k[X ] does not have this property. To prove Proposition 2 we need a lemma.

Lemma 4 Assume that k is algebraically closed. Let T be a torus acting on a commutative
domain A and let a, b, c ∈ A \ {0}. Assume that a = bc and that for each weight χ of T the
χ-component of c is nonzero if the χ-component of a is nonzero. Then b is T -fixed.

Proof The assumption on the weight components is inherited by any subtorus of T , so we
may assume that T is one-dimensional. Then the T -action amounts to a Z-grading of the
algebra A and the result follows by comparing highest and lowest degree. ��
Proposition 2 Assume that k is algebraically closed. Let G and H ′ be algebraic group
schemes over k acting on a k-algebra A and assume that these actions commute. Assume
furthermore that G is a connected reductive algebraic group and that A is a commutative
domain with AG = k. Let H be a closed subgroup scheme of G and let a ∈ A. If Aa is stable
under H and H ′, then a is a semi-invariant for H and H ′.

Proof Let A0 ⊆ A1 ⊆ A2 ⊆ · · · be the filtration of A from [6, Sect. 15] (first introduced in
[10, Sect. 4]). Then this filtration is G and H ′-stable, gr(A) is a domain and A0 is spanned by
the G-semi-invariants. Taking degrees we get that for h ∈ H(k) and u ∈ Dist(H) we have
h · a ∈ A0a and u · a ∈ A0a, and the same with H replaced by H ′. Since characters of G
are determined by their restriction to the connected centre, the result follows from Lemmas
4 and 3 and the fact that AG = k. ��

We note that, although Proposition 2 is only stated for k algebraically closed, one can in cer-
tain situations apply it to the case that k is not algebraically closed by applying field extension
from k to k. The point is that the properties “Aa is H -stable” and “a is an H -semi-invariant”
are well-behaved with respect to field extension and restriction. To make this work one needs,
of course, that k ⊗ A is a domain.

The following result is an immediate consequence of Theorem 2, Proposition 2 and the
well-known fact that, for G connected reductive, k[G] is a UFD if its derived group is simply
connected (see [12] for references and for an elementary proof).
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164 R. Tange

Corollary 1 Assume that k is algebraically closed. Let G be a connected reductive algebraic
group over k with simply connected derived group and let H be a closed subgroup scheme
of G. Then the monoid of nonzero H-semi-invariants in k[G] under the right regular action
has the unique factorisation property. Its irreducible elements are as given by Theorem 2
with the property “Aa is H-stable” replaced by “a is an H-semi-invariant”.

We finish the paper with some generalisations of results in [12,13]. For results on genera-
tors of algebras of infinitesimal invariant we refer to [5]. We need some terminology. Assume
that k is algebraically closed and let G be a connected reductive group over k. As in [9] we
call an element ξ of g∗ semi-simple if there exists a maximal torus T of G such that ξ vanishes
on all the root spaces of g relative to T .

Corollary 2 Assume that k is perfect of characteristic p > 0. Let G be an algebraic group
scheme over k such that Gk is a connected reductive algebraic group and let g be its Lie
algebra. In the following cases AGr is a UFD and its irreducible elements are the elements
a pr−t

, where a is irreducible in A and t ∈ {0, . . . , r} is maximal with the property that a is
an Ht -invariant.

(1) If A = k[G] is a UFD,
(2) If A = k[g] and the semi-simple elements are dense in Lie(Gk) = k ⊗ g,
(3) If A = S(g) = k[g∗] and the semi-simple elements are dense in (k ⊗ g)∗,

where in each case Gr ≤ G acts via the adjoint action.

Proof By Theorem 1 and Remark 2.3 we only have to check that in each case a ∈ A is a
Gr -invariant whenever Aa is Dist(Gr )-stable. For this we may assume that k is algebraically
closed. By Proposition 2 and Remark 2.1 it remains to show that every semi-invariant of Gr

in A is an invariant. Assume, in case (1), that f ∈ k[G] is a nonzero semi-invariant for Gr .
By the density of the semi-simple elements in G there exists a maximal torus T such that
f |T �= 0. Now we obtain, using the triviality of the adjoint action of T on k[T ] as in [12,
Lemma 2], that f is a Dist(T )-invariant. On the other hand, f is also an invariant of the
Dist(Uα,r ), since the infinitesimal root subgroups are unipotent. So, e.g. by [7, II.3.2], f is
a Dist(Gr )-invariant, that is, a Gr -invariant. In the other two cases the proof is completely
analogous. ��

For the next corollary we need to assume the so-called “standard hypotheses” for a reduc-
tive group in positive characteristic. They can be found in [8] and are also stated in the
introduction of [13].

Corollary 3 Assume that k is algebraically closed of characteristic p > 0. Let G be a con-
nected reductive algebraic group over k, let g be its Lie algebra, let U be the universal
enveloping algebra of g and let r ≥ 1. Assume that G satisfies the standard hypotheses (H1)-
(H3) from [8]. Then U Gr is a UFD.

Proof We have U Gr = Z Gr , where Z = U G1 = Ug is the centre of U . By [13, Theorem 2]
Z is a UFD and by [13, 1.4] Z has a G-stable filtration A0 ⊆ A1 ⊆ A2 ⊆ · · · with A0 = k
such that gr(Z) is a domain. So, by Remark 2.1, we have for a ∈ Z that Za is Gr -stable if
and only if a is a Gr -semi-invariant. Furthermore, Z ∼= S(g)g ⊆ S(g) as G-modules by [13,
1.4], so by (iii) of the preceding corollary, every Gr -semi-invariant of Z is a Gr -invariant.
Now the result follows from Theorem 1. ��
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Remarks 3 1. If k is algebraically closed, or more generally G is split over k, then k[G] is a
UFD if and only if the derived group DG is simply connected. The arguments in [12, Sect. 1]
are also valid in the more general case that G is split over k.
2. If k = R and G = SO2 is the compact real form of the one dimensional complex torus
(see [2, II.8.16]), then R[G] ∼= R[a, b]/(a2 + b2 − 1) is not a UFD, see also [3, Chap. 7 Ex.
4 to Sect. 3]. The same is true for SO2 over any field in which −1 is not a square.
3. The following example shows that the assumption on the density of the semi-simple ele-
ments in case (3) of Corollary 2 cannot be omitted. Let k be algebraically closed of characteris-
tic 2. Then pgl∗2 ∼= sl2 as GL2-modules. So the semi-simple elements are not dense in pgl∗2. Put
G = PGL2 and let (h, x, y) be a basis of pgl2 with [h, x]= x, [h, y]= y and [x, y]= 0. Then
it follows from the identity (xy)p = x p y p that S(g)G1 = S(pgl2)

pgl2 = k[x p, y p, h p, xy] is
not a UFD. Note that x and y are pgl2-semi-invariants that are not pgl2-invariants.
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